SD500 Quick Field Commissioning Guide

Note: This guide is only used as a supplementary guide for SD500 field commissioning, and is intended to facilitate quick field commissioning. It is referred to 《SD500 Commissioning Manual》, 《SD500 Spindle Servo Drive User's Manual》, 《SD500 Common Function Code Description (Being improved)》. Before using the commissioning guide, it is best to read the appeal manual first, and it is recommended that the actual commissioning be carried out in combination with the 《SD500 Commissioning Manual》 in the field application.

Version	Time	Modified by
V1.0	2020.12.26	Liu Shuai Tao

1. General Debugging Steps

In general, do not change the default value, if the machine is new for debugging, restore the factory						
settings (F00.03=22). Remember to disconnect the X terminal enable during initialization						
Rotate the self-learning a bit to let the drive recognize the encoder direction signal (to avoid the						
E.PST3 alarm), there is no need to	modify the par	ameters on the	interface of the upper computer			
rotation self-learning.						
If the parameters are copied from th	e upper comp	uter, when impo	orting parameters to the drive of			
different devices, remember to ensure it will also report E PST3 in this case	that the number	r of encoder cab	set the correct number of encoder			
cable to re-rotate the self-learning (R	emember to div	sconnect the enal	ble: disconnect the terminal cable			
or tap the emergency stop)		connect the cha	ole. disconnect the terminal cubic			
1. Determine the frequency setting me	thod					
Full pulse (F01.02=10)		Analog quantit	y (F01.02=3)			
Suitable for speed mode, position mod	le, and quasi-	Only suitable f	For speed mode. (Refer to "SD500			
stop.		Spindle Servo	Drive Instruction Manual" for			
specific wiring and parameter setting)						
2. Check the wiring (combined with pay attention to the site is a single close	the SD500 Col	nmissioning Ma	inual for wiring check, especially			
Many situations on the site are caused	d by the custor	ner's wiring err	ors. It is necessary to check them			
first when arriving at the site	a by the custor	ners wiring ent	ors. It is necessary to check them			
3. Determine the control method (mon	itor C00.14 and	l check the X ter	minal conduction status)			
X1 terminal active	X3 termi	nal active	X4 terminal active			
Speed mode	Quasi-stop	mode (adjust	Position mode (adjust F15)			
(F15.35=0 adjust F03)	F	24)				
(F15.35=1 adjust F15.33, F15.34)						
Note: The SD500 is in the enable sta	ate when the te	erminal is turned	d on, some parameters cannot be			
modified at this time. Remember to c	lisable the X to	erminal when ch	anging the parameters, especially			
when restoring the factory values						
If not, you can also see the system inte	erface. If the sp	indle is displaye	d as C-axis, it is in position mode,			
otherwise it is in speed mode.						
4. Adjustment of gain						
For spe	15.24 (Denet	e are two solution	ns:			
Une is $F15.35 = 1$, dujust $F15.35$ dhu F In this case the speed loop gain is auto	15.54. (Do not matically give	add too much va	siveness is adjusted to E15.33 and			
F15 34 F15 33 is similar to the integra	ation constant	the larger the va	lue the better the stiffness and the			
better the response. F15.34 affects the	e value of the e	lectronic inertia	, the smaller the value the greater			
the electronic inertia and the less the o	vershoot, the b	etter the response	e.			

Slow quasi-stopping speed: properly increase F24.21 and F24.24

2. General Problem Solutions

1. The transmission ratio or gear ratio corresponding to each mode								
Pulse speed c	ontrol	Pulse position	General positioning encoder					
F15.28, F15	5.29,	F15.04, F15.05	F02.35, F02.36					
2. Motor vibration	2. Motor vibration noise (first have to determine which is the problem between the drive, motor,							
transmission mecha	unism)							
А	F01.00=0, let the motor running in VF mode.							
	If the vibration and noise still exist, then it's excluded that it's a drive problem. If							
	the vibration and noise disappear, then the drive gain is not set properly, directly							
	follow the st	eps to adjust the gain and reduce t	he rigidity.					

В	If the VF mode vibration and noise are still present				
	Disconnect the motor from the drive mechanism. If the noise disappears, it is a				
	mechanical assembly problem (abnormal noise generated by belt or gear). If it				
	still exists, it is a motor problem, try to change a motor to test it.				
	Abnormal noise caused by drive gain				
Specific situation	Solutions				
Speed mode	1. set F15.35 to 0, modify the gain parameter of F03 group, pull down the				
(Analog feed)	speed loop gain F03.02 (not less than 5) to reduce the rigidity, and increase				
	F03.03 appropriately.				
	2. Increase the carrier frequency F01.40 (not too large, below 8k)				
	3. Slightly increase the feedback filtering F02.37				
	4. Again make sure the numerator denominator of the ratio is correct (fully				
	closed-loop system can be measured by motor self-learning), check whether				
	F03.00 (speed loop rigidity level) is 32, and whether F03.01 (speed loop				
0					
Speed mode	1. When F15.55=0, the debugging procedure is the same as the analog				
(Full pulse)	setting (this method is preferred).				
	2. when $F15.55=1$, adjust $F15.55$ and $F15.54$ for responsiveness, pull down $F15.22$ and pull up $F15.24$ don't along the acting value too much $F15.22$				
	F15.55 and pull up F15.54, don't change the setting value too much. F15.55				
	is similar to the integration constant, the bigger the value the better the rigidity and the better the response. E15.24 affects the value of electronic				
	ingriting the smaller the value the higger the electronic inertia the lass				
	inertia, the sinaller the value the olgger the electronic merita, the less				
Position Mode	1 Modify E15 group, reduce E15 11 (position loop gain), then reduce E15 25				
(Full pulse)	ASP proportional gain appropriately pull up the integration time, reduce the				
(I'uli puise)	rigidity of the outer loop first after the inner loop (the rest of the parameters				
	can also try to adjust generally the gain can be improved after nulling down)				
2. Large swing after	indexing in place (bad rigidity, stopping with rebound, bad stopping effect)				
Speed Mode	It is necessary to adjust the responsiveness of the second speed gain (F03.06.				
~	F03.07, F03.08) as much as possible. The filtering time is adjusted according				
	to the field conditions, usually using the default value is fine.				
Position Mode	First increase the value of F15.25 (position control ASR proportional gain),				
	and then adjust the value of F15.11 (position loop gain), the integration time				
	can be appropriately extended, following the principle of adjusting the inner				
	loop first and then the outer loop, the appropriate extension of the value of				
	F15.07 (position given smooth filtering time) can reduce the oscillation of				
	the increased gain.				
	In high-speed rigid tapping, the position loop gain and position loop				
	feedforward gain need to be increased, for different occasions need to adjust				
	the different gain parameters.				
3. Inaccurate runnir	g position (Customer feedback position running inaccurate, processing accuracy				
cannot be achieved)					
It may be the pulse	number receiving error. Monitor C05.20 (command pulse), feedback pulse C04.25				
(dual PG, using spin	dle encoder) or CU5.25 (using motor encoder), and check whether their increments				
are consistent after	operation (subtract the value before operation from the value after operation,				
1 If the inere	ness are not necessarily equal, but the increments should be equal each time).				
1. If the incre not $1:1$	ment is not consistent (consider using motor encoder and the transmission ratio is coloulate according to the electronic geor ratio $CO5 20$. If there is still a difference				
hot voon th	a number of command pulses and the number of feedback pulses, it is necessary to				
determine v	whether the force is acting on the spindle, or whether the position loop gain is too				
small (Also have to exclude the case of inaccurate gear ratio)					
2. If the comm	nand pulse number and feedback pulse number increment value remain unchanged.				
excluding the drive problem you need to determine whether the command pulse number sent					
by the system and the command pulse number C05.20 received by SD500 are the same. If it is					
the same, the pulse number is wrongly set on the machine system, if it is not the same. It can					
be determin	that there is a fault or error in the system software setting or hardware circuit.				
Common problems	when using pulse position control				
Q1: System enables	but motor does not move				
Monitoring: C5.20	pulse command count				
~					

Judgement: If C5.20 does not change, it may be a wiring error or a wrong pulse type								
Q2: Position	n control does no	ot reach the exa	ct position					
Monitoring: C5.20 pulse command count, C5.25 motor encoder pulse count (spindle encoder C4.25),								
Ludgement	• If the increase	of C5 20 and C	5 25 is the same while (14.15 - 0 check if	the system ratio			
and comman	• If the increase	tly, otherwise y	you can increase the gain a	little.	the system ratio			
4. The expan	nsion of probler	n 3. if the num	ber of pulses sent by the	machine system is	correct, and the			
wiring probl	lem is eliminated	l, but the spind	le still cannot be rotated.					
A	Check whethe	er F15.02 (pul	se counting mode) is se	et incorrectly, "AI	B" or "pulse +			
	direction"							
	In special case	s, <mark>there may be</mark>	a problem with the termin	nal definition of the	e system spindle			
р	port (when the	machine opera	ting system is a Kainty sy	stem)				
Б	output terming	leter to the spind	le port of the operating	system Let the s	vstem send the			
	command puls	to see if the	re is a frequency value.	If there is no free	uency value, it			
	means there is	a problem in th	e definition of the system	terminal	[
В		VEI	CHI with KND(凯	恩帝)				
(The	CN1		(40	X60/X64				
definition	20	PΔ +	red	1				
of the	E		rod & white		-			
it is best	10		he de se	9	X64			
to check	19	2	-					
system	4	PB -	black & white	10				
supplier)	22	OA +	blue	8				
	7	OA -	blue & black	7	-			
	21	OB +	green	6	X60			
	6	OB -	green <mark>&</mark> black	5	700			
	36	OZ +	yellow	4				
	35	OZ -	yellow & black	3				
	10	X4	blue & black	Spindle p	osition			
	11	X1	blue & black	Spindle e	enable			
	12	24V						
5 Wrong di	rection of rotation	n						
Enable forw	ard rotation and	observe wheth	er the direction is correct	If the rotation dire	ection is wrong			
the pulse sig	gnal can be reve	ersed by adjust	ing F15.02 pulse counting	g mode, and the ar	alog signal can			
6 During th	e operation of d	ouble PG mod	e there is a slight deviation	on between the sne	ed displayed by			
the system a	and the commar	id, and the tran	smission ratio needs to b	e fine-tuned (usual	lly self-learning			
will automat	tically measure a	and set)						
During the o	operation of dua	I PG mode, if	there is a small deviation	between the system	n display speed			
and the con	and the command, fine adjustment can be made by F15.28 /F15.29 (after modification, forward and							
7. Reporting	encoder PG far	llt. self-learning	g report E.PG02 (or E.PS7	3 when running)				
The motor of	encoder cable n	umber is set in	correctly. Reset the corre	ect number of enco	oder cable, then			
perform rota	perform rotational self-learning. (Remember to disconnect the X terminal to disable drive enable)							
In addition t	to the wrong sett	ing of the num	per of encoder cable, PG f	aults can be:	and a second			
I. The inte	e encoder powerference during	operation.	or effective the shield	is not grounded of	causing serious			
2. Poo	or contact of end	oder communi	cation cable, loose contact	t of connection cabl	le			
Solutions								

	Z pulse failure	Z pulse loss	Z logic failure	Cable disconnection fault			
Fault Display	PG02/07	PG 10/11	PG 08/09	PG 05/06			
Fault code	4402/4407	4410/4411	4408/4409	4405/4406			
Occurrence probability	Low	High	High	Low			
Encoder type		Magnetic ring encoder	Magnetic ring encoder				
Can be shielded or not	Unable to shield	Shieldable F2.46=0	Unable to shield	Shieldable (generally not shielded) F2.38=0			
Cause of failure	Cable number setting error	The installation distance of encoder sensor is far , Z pulse width is too narrow	No self-learning, serious field interference, encoder installation	Encoder fault, cable not plugged in			
Solution	Re-judge the number of encoder cable	F15.31=1100, otherwise shielded	Reinstall the sensor	Look for wiring and encoder itself problems			
Note: 1. The above a which have a certain	Note: 1. The above are incremental encoders; 2. The current faults are mostly magnetic ring encoders, which have a certain relationship with their installation and thickness.						

3. Some Relevant Notes

1. l dua	1. Parameters to be set for three different applications (single motor encoder, single spindle encoder, dual encoder)					
Α		Single motor encoder	Suitable for 1:1 ratios			
	1.	Set the number of enco	der cables for the FO2.33 motor (no setting is required by factory			
		default with VEICHI mo	tors)			
	2.	Set $FO2.07 = 1$ and press	s and hold SET for 1s to perform self-learning			
В		Single spindle encoder	For non-1:1 ratios, manual setting of the ratio is required			
	1.	Set the number of encode	er cables for the FO2.33			
	2.	Set $FO2.40 = 1$ Positioni	ng encoder selection			
	3.	Set $F02.07 = 1$, then pre	ss and hold SET for 1s to perform self-learning (self-learning can be			
		learned directly from the	encoder ratio F2.35/36 and written into the parameters)			
С		Dual encoder	Suitable for applications where high precision control of non-1:1			
			ratios is required			
	1.	Setting FO2.33 Number	of motor encoder cable (no factory default setting required if using			
		VEICHI motors)				
	2.	Set $FO2.40 = 2$, positioning encoder selected as spindle encoder				
	3.	Setting FO2.43 Number of spindle encoder cable				
	4.	Set FO2.45 bit = 1 to div	ide the frequency to output the spindle encoder signal			
	5.	Set $FO2.07 = 1$ and pre	ess and hold the SET key for 1s to perform self-learning (with self-			
		learning the encoder ratio	p F15.28/29 can be read out directly and written into the parameters)			

Control loops CN1 Control Terminal pins				0)(0)			0 01 0 d6 0 31		
Function	PIN No.	Signal	Function description	n	Function	PIN No.	Signal	Function description	
Analogue signal	16	AI2	0~10V Input		SC is the common	42	СОМ	24V Power ground	
input	16	AGND	Analogue GND		24V and SC are	12	24V	Internal 24V+	
Pulse signal (AB - quadrature,	20	PULS +	Pulse command +	c	shorted (NPN connection method	27	SC	I/O common terminal	
	5	PULS -	Pulse command -	[DI input (AGND and	11	X1	Forward	
pulse + direction,	19	SIGN +	Command Direction +	·	COM shorted if the analog and digital inputs of the CNC	COM shorted if the analog and digital	26	X2	Reversal
	4	SIGN -	Command Direction -			41	X 3	Quasi-stop back to 0	
	22	OA +	Crossover output OA +		together)	10	X 4	Speed position switching	
Crossover output	7	OA -	Crossover output OA -			15	TA1	Llomo return errivel signal	
to system	21	OB +	Crossover output OB +			44	TC1	Home return arrival signal	
encoder interface	6	OB -	Crossover output OB -		DO output: Y1 and	14	TA2		
	36	OZ +	Crossover output OZ +		COM form a loop	29	TB2	Fault alarm signals	
	35	OZ -	Crossover output OZ -			43	TC2		
X5~X7 are not r	marked					13	Y1	Speed and position switching completion signal output	

CN2 encoder interface							
PIN	Signal name	Function	PIN	Signal name	Function		
1	U -	Spindle encoder signals A -	8	A +	Motor encoder signals A +		
2	W -	Spindle encoder signals Z -	9	B +	Motor encoder signals B +		
3	A -	Motor encoder signals A -	10	V +	Spindle encoder signals B +		
4	B -	Motor encoder signals B -	11	T1	Motor overheating		
5	V -	Spindle encoder signals B -	12	5V	Encoder power 5V		
6	U +	Spindle encoder signals A +	13	0V	Encoder power 0V		
7	W +	Spindle encoder signals Z -	14	Z -	Motor encoder signals Z -		
Casing	Shield	/	15	Z +	Motor encoder signals Z +		

Whether motor encoder or spindle encoder, if only one encoder is connected please connect the motor encoder signal, the signal name is different from the following diagram, please refer to the pin definition

	1. Higher default gain, zero speed, F15.33 reduction required at low speeds						
Disadvantages	2. High depe	2. High dependence on encoder, so automatic switch to PI controller when no					
	PG vector is available						
F15.35 Effect of parameter values on the speed loop control mode in each mode							
F15.35	Speed mode	Speed mode Position mode Quasi-stop					
F15.35=0	PI controller	PI controller	PI				
F15.35=1	ADRC PI controller ADRC						
F15.35=1	ADRC	ADRC	ADRC				

In general, the main adjustments are F15.33 and F15.34.

F15.33 is equivalent to the integral gain (1/Ti) in PI control, the higher the value the more rigid it is, currently the default value is 100, which is already a rigid state and needs to be reduced when the encoder is not rigidly connected to the motor, otherwise it is prone to vibration. In the F2.40=1 single spindle mode, it is automatically set to 30.

F15.34 can be interpreted as an inertia adjustment, its normal adjustment range is 32 to 10, the smaller the value, the greater the electronic inertia being adjusted at this point. As the equivalent inertia becomes larger, the response can be achieved without overshooting and with greater immunity to interference. However, as this is the equivalent inertia generated by the electromagnetic torque, the smaller the F15.34, the greater the inertia and the more likely to cause vibration.

F15.32	adrc observer gain	V/F SVC FVC PMVF PMSVC PMFVC	10000	DUN	
(0x0F20)	β1	For improved system response and rigidity	(0~20000)	KUN	
F15.33	adrc observer gain	V/F SVC FVC PMVF PMSVC PMFVC	100	DUN	
(0x0F21)	β2	For improved system response and rigidity	(0~200)	KUN	
F15.34	ADRC input	V/F SVC FVC PMVF PMSVC PMFVC	32	DUN	
(0x0F22)	coefficient b	For improved system response and rigidity	(1~200)	KUN	
F15.35	adra switch	V/F SVC FVC PMVF PMSVC PMFVC	1	STOP	
(0x0F23)	auro switch	adrc and pi switch	(0~1)	51012	

PI variable gain mode

F3.01=0001 F3.00 rigidity level, adjusts Kp according to load size, can be switched on for large inertia loads, improves response at unterminated indexing.