

Optimus AD800P

Насосный преобразователь частоты

Руководство по эксплуатации

(Версия прошивки 1.56)

Оглавление

Глава 1. Оп	исание модулей AD800P	1-1
1.1.	Гехнические характеристики преобразователей серии AD800P	1-2
1.1.1.	Шильдик ПЧ серии AD800P	
1.1.2.	Силовые характеристики преобразователей AD800P	
1.1.3.	Другие технические характеристики	
1.1.4.	Показатели снижения номинальных характеристик	
	Тлаты расширения	
1.2.1.	Шильдик плат расширения	
1.2.2.	Модели и характеристики плат расширения	
1.3. I	Выносной пульт управления для ПЧ серии AD800P	
	Трочие опции, поддерживаемые ПЧ серии AD800P	
1.4.1.	Работа плат расширения и выносного пульта с модулем управления	1-6
Глава 2. Пој	оядок работы с преобразователями частоты серии AD800P	2-7
2.1. I	Инструкции по технике безопасности при работе с преобразователями частоты AD800P	2-7
2.1.1.	Перед подачей питания	
2.1.2.	Подача питания	
2.1.3.	Работа ПЧ	
2.1.4.	Отключение питания	
2.2.	/становка и подключение	2-9
2.2.1.	Монтаж и установка	2-9
2.2.2.	Установка периферийных устройств	2-13
2.2.3.	Силовое подключение	2-18
2.2.4.	Электромагнитная совместимость для электрических подключений	2-22
2.3.	Список параметров	2-24
2.4.	Тодробное описание параметров	2-43
2.4.1.	Группа параметров 0: Основные режимы управления и команды	2-43
2.4.2.	Группа параметров 1: Основные параметры управления ПЧ и двигателем	2-50
2.4.3.	Группа параметров 2: Функции дискретных входов/выходов	2-61
2.4.4.	Группа параметров 3: Функции аналоговых входов/выходов	
2.4.5.	Группа параметров 4: ПИД-регулятор и другие регуляторы	
2.4.6.	Группа параметров 5: Ограничения, защита и обнаружение ошибок	
2.4.7.	Группа параметров 6: Работа с пультом управления и дисплей пульта	
2.4.8.	Группа параметров 7: Вспомогательные и специальные функции	
2.4.9.	Группа параметров 8: Базовая и текущая информация	
2.4.10	! ! ! ! ! ! !	
2.4.11		
2.4.12		
	Эбработка неисправностей: Предупреждение, Авария и Ошибка	
2.5.1.	Коды неисправностей	
	Гехническое обслуживание	
2.6.1.	Регулярный осмотр	
2.6.2.	Техническое обслуживание	
2.6.3.	Компоненты, подверженные износу и старению	
2.6.4.	Хранение и транспортировка	
2.6.5.	Утилизациятройка входов и выходов преобразователей AD800Р	
3.1. I	Монтаж и электрические соединения	3-108
3.1.1.	Электрическая схема	
3.1.2.	Клеммы	
	Работа с пультом управления	
3.2.1.	Установка параметра	
3.2.2.	Мониторинг состояния ПЧ	
3.2.3.	Просмотр журнала ошибок (предупреждения и аварии)	
3.2.4.	Таблица отображаемых символов	3-114

Глава 4. Д	Другие опции для ПЧ серии AD800P	4-115
4.1.	Внешний пульт управления КР02	4-115
4.2.	Платы подключения энкодера (РG)	
4.2.		
4.2.		
4.2.		
4.2.	·	
4.3.	Платы расширения DP1/PN1	
4.3.	· · ·	
4.3.		_
4.3.		-
4.3.		
4.3.		
4.4.	Вынос штатного пульта управления.	
4.4. 4.5.	Установка фильтра вентилятора (модели 11-22 кВт)	
4.5. 4.6.	Другие опции	
Глава 5. Е	Базовые функции ПЧ серии AD800P	5-125
5.1.	Управление с пульта	5-125
5.2.	Управление с клемм	5-125
5.2.	1. Управление пуском и остановом	5-125
5.2.	2. Задание скорости	5-126
5.3.	Применение ПИД-регулятора процесса	5-127
5.4.	Типовое применение: поддержание давления воды	5-127
5.4.	1. Управление одним насосом	5-127
5.4.	2. Каскад с постоянным ведущим и ПИД-регулятором	5-128
5.4.	3. Каскад с переменным ведущим и ПИД-регулятором	5-130
5.4.	4. Работа в каскадном режиме по сети	5-131
5.5.	Простая настройка связи по Modbus	5-134
5.6.	Управление двигателем с постоянными магнитами	5-134
5.7.	Управление асинхронным двигателем в замкнутой системе	5-135
5.8.	Управление моментом асинхронного двигателя в разомкнутой системе	5-137
5.9.	Сброс параметров на заводские значения	5-138
5.10.	Сброс аварийных сообщений	5-138
5.11.	Параметры автонастройки двигателя	5-138
Глава 6. Г	Триложение А. Руководство по последовательной связи Modbus	6-139
6.1.	Режим применения	6-139
6.1.	·	
6.1.	' '	
6.2.	Протокол связи	
6.3.	Коды функций	
6.4.	Адрес регистра	
6.4.	•••	
6.4.		
6.5.	Коэффициент для данных, передаваемых по последовательной связи	
6.6.	Сообщение об ошибке	
6.7.	Примеры	
6.7.	·····	
6.7.		
6.7.		
6.8.	Отладка	
·	11	

Введение

Спасибо за выбор преобразователя частоты (ПЧ) AD800P, предназначенный для насосных применений.

Перед эксплуатацией внимательно прочтите данное Руководство по эксплуатации, чтобы ознакомиться с рабочими характеристиками и спецификацией ПЧ, порядком монтажа и подключения и правилами техники безопасности при эксплуатации ПЧ для достижения максимального эффекта от эксплуатации. В данном Руководстве также описаны требования к техническому обслуживанию и ремонту ПЧ, дополнительные материалы могут быть загружены с вебсайта или получены у поставщика.

Проводить установку, подключение и наладку ПЧ может только специалист (опасность поражения электрическим током).

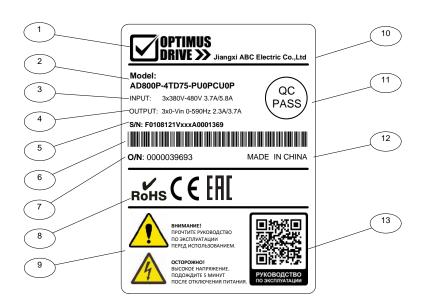
В данном Руководстве некоторая информация помечена знаком (Внимание) или (Предупреждение) в качестве предупреждений о требованиях безопасности при перемещении, установке, эксплуатации и обслуживании ПЧ.

Производитель оставляет за собой право вносить изменения в конструкцию и данное Руководство без уведомления, следите за изменениями на нашем сайте или обращайтесь к поставщику.

Глава 1. Описание модулей AD800P

Линейка типов модулей для серии AD800P:

Наименование	Тип	Характеристики	Функция
Силовой модуль	PUOP	380~480 В: 0.75~630 кВт	Регулирование скорости или момента двигателя. Для управления нужен модуль управления или пульт управления.
Модуль управ- ления	CUOP	5 дискретных входов (DI) + 2 аналоговых входа (AI) + 1 аналоговый выход (AO) + 5 дискретных выходов (DO) + 2 релейных выхода (Relay) + 2 порта RS485. 2 слота для плат расширения	Ввод настроек, управление работой с пульта или через клеммы, подключение плат расширения и/или выносного пульта.
Выносной пульт	KP01	5-сегментный светодиодный индикатор, потенциометр (встроен в модуль управления)	Локальная работа, мониторинг состояния, настройка, чтение параметров
управления	KP02	7-строчный ЖК-дисплей, USB, часы реального времени	Локальная работа, мониторинг состояния, настройка, чтение и копирование параметров, программное обновление, беспроводное управление
	PG01	12B/24B 150мА, 50кГц	Подключение обычных инкрементальных энкодеров
	PG02	5В 200мА, 200кГц	Подключение дифференциальных инкре- ментальных энкодеров
	PG03	5~7В, 10кГц, 2/4/6/8 полюсов	Подключение резольвера для определения скорости / положения
	DP01	DPV1	Интерфейс ProfiBus-DP
Плоти посициро	PN01	IO, RT, IRT	Интерфейс ProfiNet
Платы расшире- ния	MT01		Интерфейс Modbus TCP
	1001	Дискретные входы: SI1-SI3 Дискретные выходы: SO1-SO2 Аналоговые входы: MI1 (0-10B/4-20мА) MI2 (-10В+10В) Аналоговые выходы: MO1 (0-20мА), MO2 (0-10В) Источник питания +10В 10мА	
Монтажный комплект на DIN-рейку	DR1	Только до мощности 2.2 кВт	Монтажный комплект на DIN-рейку
Монтажный комплект	PT4-PT7	Только от 11 до 90 кВт	Монтажный комплект для фланцевого крепления
Разделительная пластина	ED1-ED5	Только до 22 кВт	Для заземления экранов кабелей управления и силового кабеля


ПРИМЕЧАНИЯ:

- а. Возможен индивидуальный дизайн для модуля управления, совместимого со всеми силовыми модулями
- b. Другие типы плат расширения находятся в разработке

1.1. Технические характеристики преобразователей серии AD800P

1.1.1. Шильдик ПЧ серии AD800P

Обозначения на шильдике:

Nº	Описание
1	Логотип Optimus
2	Обозначение модели
3	Входные характеристики
4	Выходные характеристики
5	Серийный номер: Артикул (F0100001) + версия SW (V002) + завод-изготовитель (A) + серийный номер (0001) + неделя-год изготовления (163)
6	Штрих-код
7	Номер заказа
8	Сертификаты: RoHS CE UL WEEE и др.
9	Предупреждения
10	Компания-изготовитель
11	QC Pass (контроль качества)
12	Страна изготовления
13	QR код

Расшифровка обозначения модели:

AD800P-4T 7D5 -PU0P CU0P

Место Символы Описание 1 AD800P Серия АD800Р 2 4T Питание, 4Т: 3 фазы 380 В 7D5H 3 Номинальная мощность. 7D5 означает 7.5 кВт 4 PU0P Тип силового модуля 5 CU0P Тип модуля управления

1.1.2. Силовые характеристики преобразователей AD800P

Модель	Номиналь- ная мощ- ность (кВт)	Напряжение питания (B)	Входной ток (A)	Выход- ной ток (A)	Автомат / контактор (A)	Расход на охлажде- ние (м3/ч)	Тепло- выделе- ние (Вт)
AD800P-4TD75-PU0PCU0P	0.75	3×380-440	3.7	2.3	10/10	17.2	47
AD800P-4T1D5-PU0PCU0P	1.5	3×380-440	6	3.8	10/10	17.2	52
AD800P-4T2D2-PU0PCU0P	2.2	3×380-440	8.5	5.3	16/10	17.2	62
AD800P-4T4D0-PU0PCU0P	4.0	3×380-440	15	9.6	25/25	45.5	110
AD800P-4T5D5-PU0PCU0P	5.5	3×380-440	20.8	13.0	32/25	90	125
AD800P-4T7D5-PU0PCU0P	7.5	3×380-440	27.1	17.0	40/32	90	148
AD800P-4T011-PU0PCU0P	11	3×380-440	35.9	25.0	63/40	124	218
AD800P-4T015-PU0PCU0P	15	3×380-440	43.4	32.0	63/63	170	315
AD800P-4T18D-PU0PCU0P	18.5	3×380-440	51.5	38.0	100/63	230	391
AD800P-4T022-PU0PCU0P	22	3×380-440	61	45.0	100/100	272	478
AD800P-4T030-PU0PCU0P	30	3×380-440	82.5	61.0	150/100	303	564
AD800P-4T037-PU0PCU0P	37	3×380-440	72	75.0	150/100	374	654
AD800P-4T045-PU0PCU0P	45	3×380-440	88	91.0	175/135	408	816
AD800P-4T055-PU0PCU0P	55	3×380-440	110	112	200/150	476	1011
AD800P-4T075-PU0PCU0P	75	3×380-440	148	150	250/200	595	1308
AD800P-4T090-PU0PCU0P	90	3×380-440	175	180	300/240	646	1771
AD800P-4T110-PU0PCU0P	110	3×380-440	206	215	350/260	714	2123
AD800P-4T132-PU0PCU0P	132	3×380-440	251	260	400/350	850	2649
AD800P-4T160-PU0PCU0P	160	3×380-440	304	315	500/450	1029	3219

Модель	Номиналь- ная мощ- ность (кВт)	Напряжение питания (B)	Входной ток (A)	Выход- ной ток (A)	Автомат / контактор (A)	Расход на охлажде- ние (м3/ч)	Тепло- выделе- ние (Вт)
AD800P-4T185-PU0PCU0P	185	3×380-440	350	365	630/450	1190	3785
AD800P-4T200-PU0PCU0P	200	3×380-440	381	395	630/550	1292	4000
AD800P-4T220-PU0PCU0P	220	3×380-440	420	435	800/550	1411	4217
AD800P-4T250-PU0PCU0P	250	3×380-440	472	480	800/630	1564	4481
AD800P-4T280-PU0PCU0P	280	3×380-440	525	540	800/630	1700	4900
AD800P-4T315-PU0PCU0P	315	3×380-440	590	605	1000/630	1870	5500
AD800P-4T355-PU0PCU0P	355	3×380-440	647	660	1000/800	2125	6300
AD800P-4T415-PU0PCU0P	415	3×380-440	718	745	1200/800	2380	7282
AD800P-4T450-PU0PCU0P	450	3×380-440	836	805	1200/800	2600	7800
AD800P-4T500-PU0PCU0P	500	3×380-440	932	918	1400/1000	3100	8000
AD800P-4T560-PU0PCU0P	560	3×380-440	1021	1028	1600/1200	3600	8300
AD800P-4T630-PU0PCU0P	630	3×380-440	1080	1100	1800/1400	4100	9500

1.1.3. Другие технические характеристики

	Пункт	Характеристики				
	Напряжение	3 фазы 380~480 B -15%~+10%				
Входные харак-	Частота	50/60 Γц±5%				
теристики	Дисбаланс	3%				
Выходные харак-	Напряжение	3 фазы 0~100% входного напряжения				
теристики	Частота	0~590 Гц				
	Метод управления	V/F , Векторный				
	Тип двигателя Асинхронный, синхронный с постоянными магнитами					
	Стартовый момент 0.5 Гц 150%					
	Перегрузочная способность	Легкий режим: 120% 60 сек, 150% 3 сек				
	Коэффициент мощности	≧ 0,95				
Характеристики	Частота ШИМ	0.37~22 кВт: 2~16 кГц, 30-90 кВт: 2~8 кГц, 110-160 кВт: 2~4 кГц, ≧185 кВт: 2~3 кГц,				
управления	Разрешение задания скорости	Дискретное: 0.1 Гц; аналоговое: 0.5‰ от максимального значения;				
	Погрешность по скорости в от- крытом контуре скорости	±0.5% от номинальной скорости				
	Источник команд управления	Пульт управления, дискретные входы, последовательная связь				
	14	Пульт управления, аналоговые входы, импульсный вход, последова-				
	Источник задания	тельная связь				
	Время разгона / замедления 4 набора времен разгона / замедления, диапазон: 0.05-6000.00 сек					
Основные функ- ции	постоянного тока, торможение по тока/момента, подхват вращающе	скорости или управление моментом с датчиком скорости работают				
Функции прило- жений		оростью с помощью клемм управления или функции ПЛК, S-образные анический тормоз, счетчик, ПИД-регулятор, толчковый режим (JOG) и т.				
Функции защиты	пряжение, перегрузка по току, пер обрыв кабелей управления и др.	вемления, потеря фазы питания, недостаточное напряжение, перена- регрузка, перегрев, тепловая защита двигателя, потеря фазы двигателя,				
Клеммы управ-		х выходов, 2 порта RS485, 2 реле (HO), 2 аналоговых входа, один ана-				
ления	логовый выход.					
	Покрытие плат	Класс 3С3				
	Уровень защиты	IP20				
	Рабочая температура	Рабочий диапазон: -10 ∼ 50°C				
Условия эксплуа-	. 200 ian remireparypu	Номинальный ток до 40°C, выше – со снижением характеристик				
тации	Влажность	5%-85% (без образования конденсата до 95%)				
r way in	Вибрации	≤90 кВт: 1.14g; ≥110 кВт: 0.7g				
	Высота установки	1000 м, от 1000 м со снижением номинальных характеристик				
	Длина моторного кабеля	Экранированный кабель: до 50 м; неэкранированный кабель: до 100 м				
Прочее	Тормозной модуль	Встроенный до мощности 22 кВт				

1.1.4. Показатели снижения номинальных характеристик

Снижение от температуры окружающей среды: снижение номинальных характеристик на 3,0% за градус происходит при температуре выше 40°C.

Снижение от высоты установки: снижение происходит при установке ПЧ выше 1000 м. Снижение номинальных характеристик составляет 1% на 100 м.

1.2. Платы расширения

ПЧ серии AD800P поддерживают различные типы плат расширения, включая платы энкодеров, коммуникационные платы и платы расширения входов/выходов.

1.2.1. Шильдик плат расширения

Пункт	Описание				
1	Модель				
2	Серийный номер: Артикул (F0100001) + версия SW (V002) + завод-изготовитель (A) + серийный но-				
	мер (0001) + неделя и год изготовления (518)				
3	Штрих-код				
4	Проверка качества (QC Pass)				

Расшифровка обозначения платы:

PG 01

Nº		Описание				
1	PG	Тип платы (PG – плата энкодера)				
2	01	Модель платы				

1.2.2. Модели и характеристики плат расширения

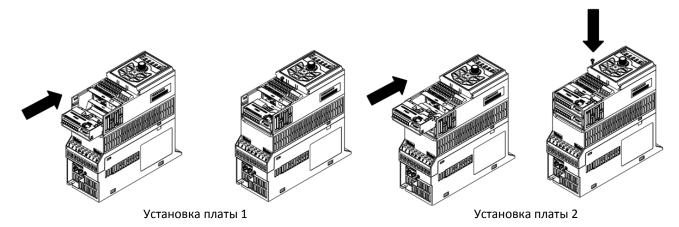
Тип/мод	дель	Характеристики	Внешний вид
Платы энко-	PG01	Питание: 12B/24B; 150мА; Вход: А/В/Z, напряжение/ОС/ОЕ/push-pull, 50кГц Масштабируемый выход: А1 В1 (масштабирование: 1~255)	COMMON ENCODER PG01 TOT GEO GEO SE SE SE GEO SON SEN THE SELECTION SELECTIO
деров	PG02	Питание: 5B, 200mA; Вход: А+/А-, В+/В-, Z+/Z- дифференциальный сигнал, 200кГц Масштабируемый выход: А+/А-, В+/В- (масшта- бирование: 1~255)	DIFFERENCIAL ENCODER PG02 PG02 PG00 PG

Тип/мод	дель	Характеристики	Внешний вид
	PG03	Резольвер Питание: REF+/REF; (VRMS: 5B~7B) Частота возбуждения: 10кГц Вход: SIN+/SIN-; COS+/COS- Число пар полюсов: 2, 4, 6, 8	RESOLVER PG03 G00: 00: 00: 00: 00: 00: 00: 00: 00: 00:
	DP01	Протокол: Profibus DPV0/DPV1 Клеммы: DB9 c DP+, DP-, RTS, 5V, GND Скорость обмена: 9.6кбит/с~12Мбит/с Файл GSD: есть	PROFIBUS DP DP01 FILES
	PN01	Протокол: Profinet RT, IRT, ProfiDrive Разъем: RJ45	PROFINET MAIN PNO1 POOR RJ1 RJ2
Платы последова- тельной связи	ET01	Протокол: EtherCAT CoE Разъем: RJ45 Файл XML: есть	ETHERCAT ETO1 OUT IN
	MT01	Протокол: Modbus TCP Разъем: RJ45	MODBUS TCP BENDA MT01 VIO OND PE RJ1 RJ2
Плата рас- ширения входов/ вы- ходов	IO01	Дискретные (3DI+2DO) Аналоговые (2AI+2AO) Резистивный (1RI) Питание 10V	IO EXTENSION SHOP IN IO SHOP SO

1.3. Выносной пульт управления для ПЧ серии AD800P

Встроенный в ПЧ серии AD800P пульт управления КР01 можно вынести на расстояние до 10 м с помощью кабеля RJ45-х или стандартного кабеля типа "патч-корд". Можно также использовать усовершенствованный пульт управления КР02 с многострочным текстовым ЖК дисплеем и дополнительными функциями: выбор языка (включая русский), порт USB, часы реального времени, возможность копирования параметров, обновления прошивки и т.д., см. соответствующее Руководство.

KP02


1.4. Прочие опции, поддерживаемые ПЧ серии AD800P

Для ПЧ серии AD800P могут поставляться комплекты монтажа на DIN-рейку, фланцевого монтажа и разделительные пластины. Монтаж на DIN-рейку возможен только для моделей мощностью до 2,2 кВт. Возможность фланцевого монтажа доступна только для моделей от 11 кВт до 90 кВт. Разделительные пластины доступны только для моделей до 22 кВт.

Кроме того, в зависимости от условий эксплуатации могут потребоваться внешние дроссели, тормозные резисторы или фильтры. Методика выбора этих элементов приводится в настоящем Руководстве. Их можно приобрести у стороннего производителя, или проконсультироваться с поставщиком преобразователя.

1.4.1. Работа плат расширения и выносного пульта с модулем управления

Вы можете расширить функционал ПЧ, подключив к преобразователю платы расширения. AD800P поддерживают установку различных плат расширения, таких, как PG01, PG02, PG03, DP01, PN01, IO01 и т. д. В преобразователь может быть установлено две платы расширения. Способ установки плат расширения показан ниже.

Вставьте плату по направляющим в нижней части модуля управления до упора. Закрепите плату расширения винтом в правом верхнем углу платы.

Глава 2. Порядок работы с преобразователями частоты серии AD800P

2.1. Инструкции по технике безопасности при работе с преобразователями частоты AD800P

Обозначения:

В данном Руководстве представлены два вида предупреждений:

Внимание: несоблюдение правил техники безопасности может привести к повреждению оборудования

Предупреждение: несоблюдение правил техники безопасности может привести к травме или смерти

2.1.1. Перед подачей питания

Внимание

Источник питания должен соответствовать характеристикам ПЧ.

Установите ПЧ в безопасных условиях, при указанных в спецификации температуре и влажности окружающей среды, вне воздействия прямых солнечных лучей. Не допускайте попадания на ПЧ капель воды, поскольку его степень защиты - IP20. Установка ПЧ в небезопасных условиях может привести к пожару, взрыву или поражению электрическим током.

Если ПЧ установлен в шкафу, необходимо обеспечить хороший воздухообмен. Охлаждающие вентиляторы для отвода тепла из шкафа особенно необходимы тогда, когда там установлены и другие компоненты, выделяющие тепло. Рабочая температура внутри шкафа должна поддерживаться в соответствии со спецификацией всех установленных компонентов, чтобы избежать срабатывания защиты от перегрева или возгорания.

НЕ производите пуск/останов ПЧ путем включения/выключения питания, например, контактором. Это может привести к повреждению ПЧ. Рекомендуется запускать/останавливать ПЧ с пульта, сигналами на клеммах ввода или командой по последовательной связи.

Установка контактора или воздушного выключателя на выходной стороне ПЧ не рекомендуется. Если это всё-таки необходимо, то следует выполнить управление контактором или воздушным выключателем так, чтобы переключение происходило при отсутствии тока или напряжения в выходной цепи ПЧ.

Запрещается подключать любой конденсатор или варистор непосредственно в выходной цепи ПЧ. Это может привести к аварийным отключениям или повреждению преобразователя.

Сильные искажения в питающей сети, включая гармоники и дисбаланс, существенно превышающие стандартные допуски, может привести к выходу из строя или повреждению ПЧ. Избегайте прямого подключения к общей точке с оборудованием, которое вызывает сильные искажения в сети, таким, как, например, электросварочный аппарат.

Убедитесь, что все клеммы (R / S / T / DC+ / DC- / BR / U / V / W) подключены правильно, в противном случае ПЧ будет поврежден при включении или запуске.

В заводских настройках по умолчанию тепловая защита двигателя отключена. Если эта функция требуется, установите соответствующий параметр в соответствии с данным Руководством.

Испытания изоляции ПЧ или внутренних компонентов могут его повредить. Проконсультируйтесь с технической службой поставщика, если это необходимо сделать.

Электронные компоненты ПЧ чувствительны к электростатическому разряду, не касайтесь печатных плат без защиты от электростатического разряда.

ПЧ предназначен для работы под высоким напряжением, поэтому за установку, ввод в эксплуатацию, испытания и техническое обслуживание могут отвечать только квалифицированные специалисты.

НЕ берите ПЧ за переднюю крышку, чтобы избежать его падения.

Предупреждение

Убедитесь, что питание было отключено достаточное время (после погасания дисплея для приборов до 22 кВт включительно – 4 минуты, для приборов от 30 кВт и выше – 15 минут), прежде чем начинать подключение. Устанавливайте ПЧ на огнеупорный материал, чтобы избежать возгорания.

Не устанавливайте изделие в среде с взрывоопасными газами, в противном случае существует опасность взрыва. Подключите клемму РЕ к заземлению. НИКОГДА не используйте нулевую линию в качестве заземления, иначе это может привести к поражению электрическим током.

Категорически запрещается разбирать ПЧ и менять детали, компоненты и элементы ПЧ без предварительного согласования. Это может привести к поражению электрическим током, возгоранию и т. д.

Перед подачей питания правильно и надежно установите крышку ПЧ.

2.1.2. Подача питания

Предупреждение

НИКОГДА не подключайте и не снимайте какой-либо элемент ПЧ, когда подключено питание ПЧ, за исключением съемного пульта управления. Это может привести к повреждению ПЧ и поражению электрическим током. Не допускайте к преобразователю детей и неавторизованный персонал.

2.1.3. Работа ПЧ

Внимание

Не подключайте и не отключайте двигатель от ПЧ время работы. Это может привести к аварии или повреждению преобразователя.

Длина моторного кабеля, превышающая разрешенную в спецификации, сократит срок службы ПЧ или приведет к его выходу из строя. Если к ПЧ подключены параллельно несколько двигателей, общая длина моторных кабелей должна быть не более 50% от максимально разрешенной в спецификации. Если суммарная длина моторного кабеля превышает это значение, на выходе ПЧ установите моторный дроссель.

При задании рабочих характеристик двигателя обратите внимание на ограничения по скорости для подшипников двигателя и другого внутреннего механического устройства в двигателе.

Предупреждение

При работе ПЧ НЕ проверяйте цепь с помощью мультиметра, осциллографа или любого другого оборудования. НЕ снимайте переднюю крышку ПЧ во время работы.

Если настройкой параметров включена функция Автозапуска после ошибки (Fault-Auto-Restart), двигатель после сбоя может снова начать вращаться. Будьте внимательны, во избежание получения травм, со всеми движущими частями механической системы, включая двигатель.

2.1.4. Отключение питания

Предупреждение

Перед тем, как дотронуться до клемм питания или какого-либо элемента внутри ПЧ, убедитесь, что все силовые соединения отключены, включая силовое звено постоянного тока.

Помните, что внутри ПЧ некоторое время может быть остаточное напряжение. Выждите достаточное время (после погасания дисплея для приборов до 22 кВт включительно – 4 минуты, для приборов от 30 кВт и выше – 15 минут), прежде чем касаться силовых клемм или любых внутренних элементов ПЧ.

2.2. Установка и подключение

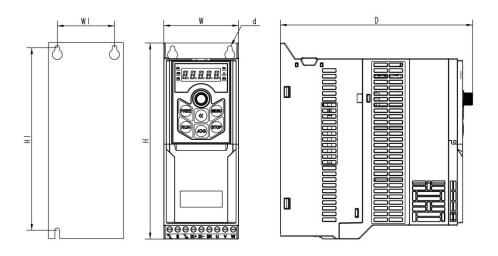
2.2.1. Монтаж и установка

2.2.1.1. Условия окружающей среды

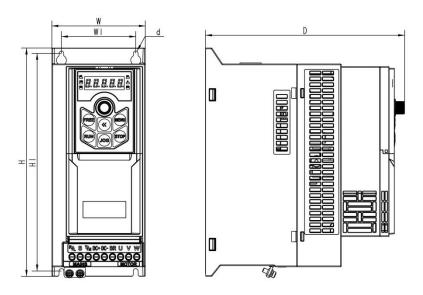
Рабочая температура составляет от -10 до 50°C (см. главу 1.1.4);

Монтируйте ПЧ на огнеупорную поверхность;

Вибрация в месте установки ПЧ должна быть не выше 1,14g/0,7g (см. технические характеристики). Убедитесь в правильности и надежности крепления ПЧ на поверхности;


Обеспечьте достаточное пространство вокруг ПЧ для отвода тепла;

Избегайте попадания на ПЧ прямых солнечных лучей, капель воды, превышения влажности и образования конденсата:

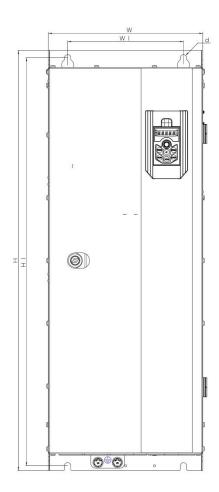

НЕ устанавливайте ПЧ в среде с агрессивными, горючими или взрывоопасными газами;

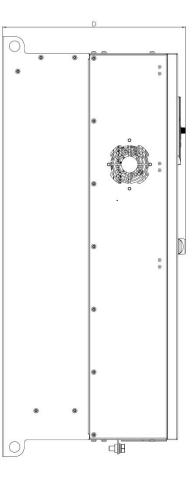
НЕ устанавливайте ПЧ в среде, содержащей капли масла, пыль, в т.ч. металлическую пыль и стружку.

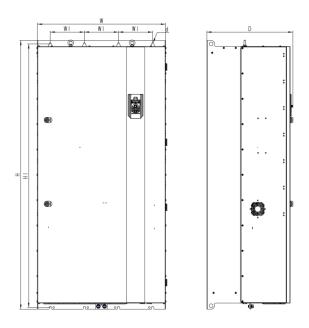
2.2.1.2. Габаритные и монтажные размеры



Типоразмер D1



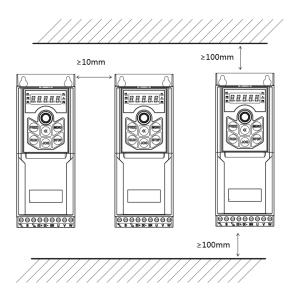

Типоразмеры D2-D4



Типоразмеры D5-D6

Типоразмеры D7-D9

Типоразмер D10


Размеры:

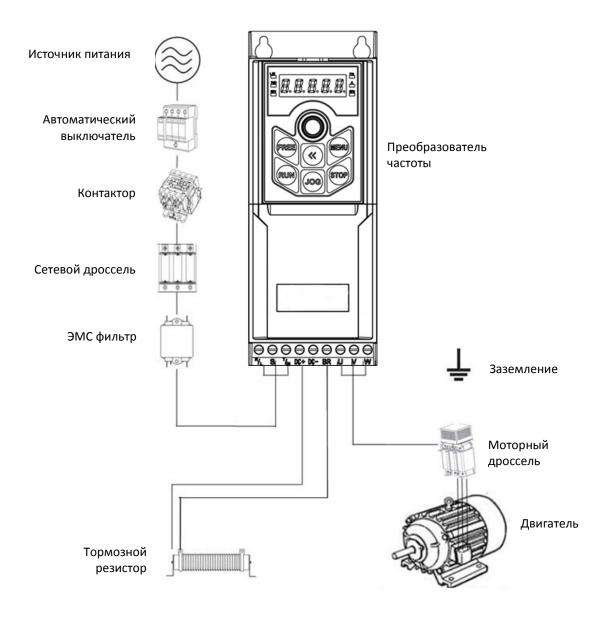
Типоразмер	Номинальная мощность	Размеры (мм)					
	3×380-480B	W	Н	D	W1	H1	d
D1	0.75-2.2 кВт	72	188	185	55	175	4.5
D2	4.0 кВт	88	215	188	70	205	4.5
D3	5.5-7.5 кВт	100	250	194	80	240	4.5
D4	11-22 кВт	170	370	212	145	355	6.5
D5	30-55 кВт	280	490	258	220	470	9
D6	75-110 кВт	330	620	278	270	600	9
D7	132-185 кВт	320	870	380	240	845	13
D8	200-355 кВт	500	1070	410	380	1040	13
D9	415-500 кВт	650	1220	430	480	1190	13
D10	560-630 кВт	750	1570	505	3x200	1540	13

2.2.1.3. Правила монтажа

Одиночный и групповой монтаж

Силовые модули AD800P поддерживают как одиночный монтаж, так и монтаж в ряд. Вокруг ПЧ должно быть предусмотрено достаточно места для отвода тепла, как показано ниже:

Если указанное расстояние между преобразователями обеспечить нельзя, то следует уменьшить ограничение температуры окружающего воздуха.


Монтаж ПЧ друг над другом

При установке ПЧ друг над другом тепло, выделяемое ПЧ снизу, может перегревать ПЧ, смонтированный выше. В этом случае необходимо установить пластину для теплоотвода в сторону, как показано на рисунке ниже.

2.2.2. Установка периферийных устройств

Большинство возможных периферийных устройств, устанавливаемых в качестве опций для запуска ПЧ, показано ниже:

Оборудова- ние	Точка подключения	Функции		
Автоматиче- ский выклю- чатель	Первый элемент на линии питания	Автоматическое отключение питания при высоком токе для защиты ПЧ от повреждения и ограничения воздействия на прочее оборудование.		
Контактор	Между автоматическим выключателем и входом питания ПЧ	Включение или выключение питания ПЧ. Частота включения- выключения не должна превышать 2 раза в час, в противном случае ПЧ может быть поврежден. НЕ запускайте и не останавливайте двигатель, включая и выключая питание с помощью контактора.		
Сетевой дроссель	На входе питания ПЧ	Ограничение гармоник в линии питания или защита преобразователя в жестких условиях с искажением или дисбалансом напряжения питания.		
ЭМС фильтр	На входе питания ПЧ	Улучшение характеристик ЭМС, особенно для кондуктивных помех.		
Тормозной резистор / тормозной модуль	Клеммы DC+ и BR для тормозного резистора, клеммы DC+ и DC– для тормозного модуля	Тормозной резистор можно использовать для сброса на него электро- энергии, вырабатываемой двигателем при работе в генераторном режиме. Для ПЧ без встроенного тормозного модуля необходимо установить внешний тормозной модуль перед тормозным резистором. НЕ используйте тормозной резистор для защиты ПЧ при завышенном напряжении сети.		
Моторный дроссель, синус-фильтр	. Моторный дроссель (или дроссель dU/dt) может быть установлен дл компенсации погонной емкости кабеля двигателя; устанавливается в большой длине кабеля. Конкретные значения приведены в соответ-			

2.2.2.1. Выбор тормозного резистора

Тормозной резистор выбирается по сопротивлению и мощности, как показано ниже. В основном, чем больше инерция системы, короче время замедления или выше частота торможения двигателя, тем больше мощность и меньшее сопротивление необходимого тормозного резистора. Помните, что сопротивление не может быть меньше значения, указанного в таблице ниже, в противном случае ПЧ может выйти из строя.

Выбор тормозного резистора:

Расчет тормозного сопротивления: $R = U_{DCB}^2 \div (K_{BF} \times P_{Nom})$

U_{DCB} --- Пороговое напряжение постоянного тока, запускающее функцию тормозного резистора (это значение может быть установлено в параметре через пульт управления или по последовательной связи, обычно, это значение равно 385 В постоянного тока для моделей 200 В и 710 В постоянного тока для моделей 380 В);

P_{Nom} --- Номинальная мощность двигателя;

 K_{BF} --- Коэффициент торможения. Чем больше инерция, чем меньше время торможения, тем большее необходимое значение коэффициента. Значение K_{BF} рекомендуется задавать в диапазоне 0,8 $^{\sim}$ 2,0. Значение 1.0 рекомендуется для общего применения, 1.5 рекомендуется для большой инерции, 2.0 рекомендуется для оборудования металлургических заводов;

Выбор мощности тормозного резистора

Быстрый расчет тормозной мощности: $P_B = U_{DCB}^2 \div R$

Теоретически, размер мощности тормозного резистора можно выбирать быстрым расчетом, но следует использовать поправочный коэффициент, основанный на частоте торможения и режиме торможения, чтобы избежать потери места на монтаж (слишком большой размер резистора) и излишних затрат на приобретение тормозного резистора. Поправочный коэффициент: $Pr = K_{Bt} \times P_{Bt}$

 K_{Bt} = 0,12~0,9 — поправочный коэффициент. Нормальное значение составляет 0,12. Чем чаще происходит ускорение / замедление, чем больше продолжительность замедления, тем больше значение K_{Bt} . Обычно для эскалаторов и подобного оборудования рекомендуется значение 0,9, для центробежного оборудования — значение 0,6 (обратите внимание, выбор мощности зависит также от условий охлаждения).

Рекомендация по выбору тормозного резистора (для применений, в которых двигатель работает в режиме торможения не очень часто и не очень долго):

Питание ПЧ (В)	Мощность двигателя (кВт)	Тормозное сопротивление (Ом)	Мощность резистора (Вт)
3×380-440	0.75	≥300	200
3×380-440	1.5	≥160	400
3×380-440	2.2	≥100	600
3×380-440	4	≥75	800

Питание ПЧ (В)	Мощность двигателя (кВт)	Тормозное сопротивление (Ом)	Мощность резистора (Вт)
3×380-440	5.5	≥50	1200
3×380-440	7.5	≥35	1500
3×380-440	11	≥25	2500
3×380-440	15	≥20	3000
3×380-440	18.5	≥15	3600
3×380-440	22	≥12	5000
3×380-440	30	≥9	7000

2.2.2.2. Выбор сетевого и моторного дросселя

Выбор сетевого дросселя:

Питание ПЧ (В)	Мощность двигателя (кВт)	Ток дросселя (A)	Индуктивность дросселя (2% падение напряже- ния) (мГн)
3×380-440	0.75	3.0	4.60
3×380-440	1.5	5.0	2.80
3×380-440	2.2	7.0	2.00
3×380-440	4	10.0	1.40
3×380-440	5.5	15.0	0.93
3×380-440	7.5	20.0	0.70
3×380-440	11	30.0	0.47
3×380-440	15	40.0	0.35
3×380-440	18.5	50.0	0.28
3×380-440	22	60.0	0.24
3×380-440	30	75.0	0.19

Примечания:

- а. Сетевой дроссель не рекомендуется для подавления токовых гармоник.
- b. Не рекомендуется добавлять сетевой дроссель на входе ПЧ, которые уже имеют встроенный дроссель.

Выбор моторного дросселя (длина моторного кабеля ≤200 м, dU/dt < 500 В/мкс)

Питание (В)	Мощность дви-	Ток дросселя	Индуктивность дросселя (2%
Питание (в)	гателя (кВт)	(A)	падение напряжения) (мГн)
3×380-440	0.75	2.3	6.08
3×380-440	1.5	3.8	3.68
3×380-440	2.2	5.3	2.64
3×380-440	4	9.00	1.56
3×380-440	5.5	13.00	1.08
3×380-440	7.5	17.00	0.82
3×380-440	11	25.00	0.56
3×380-440	15	32.00	0.44
3×380-440	18.5	38.00	0.36
3×380-440	22	45.00	0.32
3×380-440	30	61.00	0.22
3×380-440	37	75	0.18
3×380-440	45	91	0.16
3×380-440	55	112	0.12
3×380-440	75	150	0.10
3×380-440	90	180	0.08
3×380-440	110	215	0.06
3×380-440	132	260	0.06
3×380-440	160	315	0.04
3×380-440	185	365	0.04
3×380-440	200	395	0.04
3×380-440	220	435	0.03
3×380-440	250	480	0.03
3×380-440	280	540	0.03

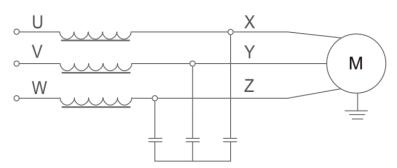
Питание (В)	Мощность дви- гателя (кВт)	Ток дросселя (A)	Индуктивность дросселя (2% падение напряжения) (мГн)
3×380-440	315	605	0.02
3×380-440	355	660	0.02
3×380-440	415	745	0.02
3×380-440	450	827	0.02
3×380-440	500	918	0.017
3×380-440	560	1028	0.014

2.2.2.3. Выбор ЭМС фильтров

ЭМС фильтр на входе ПЧ

Благодаря ЭМС фильтрам, указанным в таблице ниже или фильтрам с аналогичными параметрами, установленным на входе ПЧ, преобразователь может достичь характеристик электромагнитной совместимости класса A1.

Питание (В)	Мощность ПЧ (кВт)	Номинальный ток ЭМС фильтра (A)	Тип ЭМС фильтра*
	0.75	5	NFI-0005-SA
	1.5	5	NFI-0005-SA
	2.2	10	NFI-0010-SA
	4	10	NFI-0010-SA
	5.5	20	NFI-0020-SA
	7.5	20	NFI-0020-SA
	11	36	NFI-0036-SA
	15	36	NFI-0036-SA
	18.5	50	NFI-0050-SA
	22	50	NFI-0050-SA
	30	65	NFI-0065-SA
	37	80	NFI-0080-SA
	45	100	NFI-0100-SA
	55	150	NFI-0150-SA
380B	75	150	NFI-0150-SA
3805	90	200	NFI-0200-SA
	110	250	NFI-0250-BA
	132	250	NFI-0250-BA
	160	300	NFI-0300-BA
	185	400	NFI-0400-BA
	200	400	NFI-0400-BA
	220	400	NFI-0400-BA
	250	600	NFI-0600-BA
	280	600	NFI-0600-BA
	315	600	NFI-0600-BA
	355	900	NFI-0900-BA
	415	900	NFI-0900-BA
	450	900	NFI-0900-BA
	500	900	NFI-0900-BA
	560	900	NFI-0900-BA


Примечание: *модели приведены для примера. Для выбора конкретной модели ЭМС фильтра обратитесь к поставщику.

Синус-фильтр на выходе ПЧ

Рекомендации по выбору синус-фильтра на выходе ПЧ:

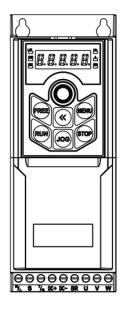
- (5)	Мощность	Номинальный	Индуктивность	- (-)
Питание (В)	ПЧ (кВт)	ток (А)	(мГн)	Емкость (мкФ)
	0.75	10	2.50	10.0
	1.5	10	2.50	10.0
	2.2	10	2.50	10.0
	4	18	2.50	10.0
	5.5	18	1.50	16.0
	7.5	18	1.50	16.0
	11	30	0.78	32.0
	15	30	0.78	32.0
	18.5	60	0.38	64.0
	22	60	0.38	64.0
	30	60	0.38	64.0
	37	110	0.260	148.0
	45	110	0.260	148.0
	55	110	0.260	148.0
380B	75	180	0.160	240.0
3000	90	180	0.160	240.0
	110	270	0.110	350.0
	132	270	0.110	350.0
	160	450	0.066	600.0
	185	450	0.066	600.0
	200	450	0.066	600.0
	220	450	0.066	600.0
	250	750	0.040	1000.0
	280	750	0.040	1000.0
	315	750	0.040	1000.0
	355	750	0.040	1000.0
	415	750	0.040	1000.0
	450	1000	0.033	1200.0
	500	1200	0.027	1500.0
	560	1200	0.027	1500.0

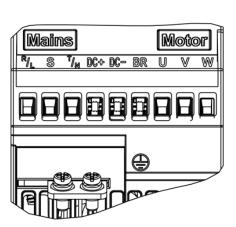
Значения (индуктивность, емкость) основаны на схеме синус фильтра:

Примечание: Рекомендуемые значения подходят для частоты коммутации не ниже заводской настройки по умолчанию и рабочей частоты двигателя не выше 200 Гц. Если условия применения превышают допустимые пределы, необходимо выбрать другой синус-фильтр; обратитесь к поставщику.

Пример моделей синус-фильтров:

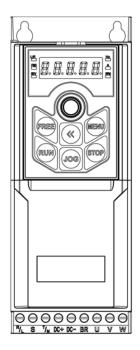
Мощность ПЧ (кВт)	Номинальный ток (A)	Тип синус-фильтра*
5.5	15	OSF-0015-EISA-E4M0
7.5	20	OSF-0020-EISA-E3M0
11	30	OSF-0030-EISA-E2M0
15	40	OSF-0040-EISA-E1M4

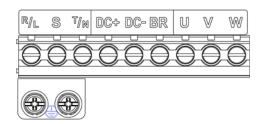

Мощность ПЧ (кВт)	Номинальный ток (A)	Тип синус-фильтра*
18.5	50	OSF-0050-EISA-E1M2
22	60	OSF-0060-EISA-E1M0
30	80	OSF-0080-EISA-EM80
37	90	OSF-0090-EISA-EM65
45	120	OSF-0120-EISA-EM52
55	150	OSF-0150-EISA-EM45
75	200	OSF-0200-EISA-EM35
110	250	OSF-0250-EISA-EM30
132	300	OSF-0300-EISA-EM24
160	360	OSF-0360-EISA-EM20
200	450	OSF-0450-EISA-EM15
250	500	OSF-0500-EISA-EM15
280	600	OSF-0600-EISA-EM12
315	660	OSF-0660-EISA-EM10
355	750	OSF-0750-EISA-EM09
400	900	OSF-0900-EISA-E75U
450	1000	OSF-1000-EISA-E60U
500	1200	OSF-1200-EISA-E65U
560	1200	OSF-1200-EISA-E65U


Примечание: *модели приведены для примера. Для выбора конкретной модели синус-фильтра обратитесь к поставщику.

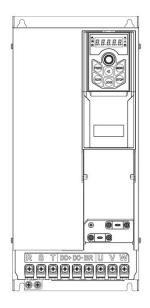
2.2.3. Силовое подключение

2.2.3.1. Силовые клеммы

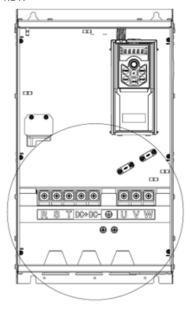

▼ 0.75 – 2.2 кВт:

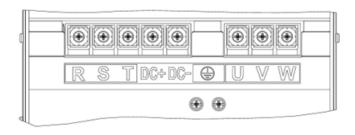


Обозначение	Функция
R/L, S, T/N	Клеммы подключения к питающей сети
U, V, W	Выходные клеммы питания двигателя
DC+, DC-	Клеммы цепи постоянного тока
DC+, BR	Клеммы подключения тормозного резистора
	Заземление

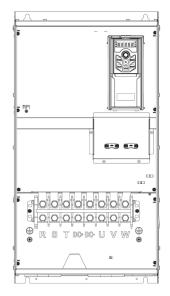

▼ 4.0 – 7.5 кВт:

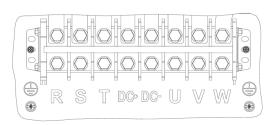
Обозначение	Функция
R/L, S, T/N	Клеммы подключения к питающей сети
U, V, W	Выходные клеммы питания двигателя
DC+, DC-	Клеммы цепи постоянного тока
DC+, BR	Клеммы подключения тормозного резистора
	Заземление


▼ 11 – 22 кВт:

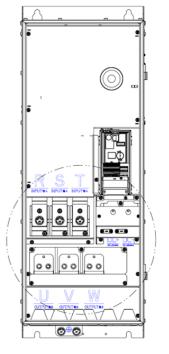


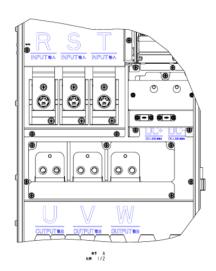
Обозначение	Функция
R, S, T	Клеммы подключения к питающей сети
U, V, W	Выходные клеммы питания двигателя
DC+, DC-	Клеммы цепи постоянного тока
DC+, BR	Клеммы подключения тормозного резистора
	Заземление


▼ 30 – 55 кВт:

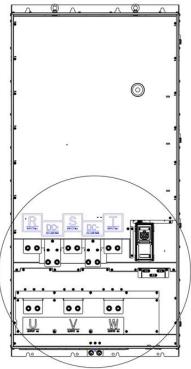


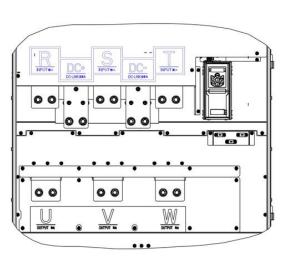
Обозначение	Функция
R, S, T	Клеммы подключения к питающей сети
U, V, W	Выходные клеммы питания двигателя
DC+, DC-	Клеммы цепи постоянного тока
	Заземление


▼ 75 - 110 κBτ:



Обозначение	Функция
R, S, T	Клеммы подключения к питающей сети
U, V, W	Выходные клеммы питания двигателя
DC+, DC-	Клеммы цепи постоянного тока
	Заземление


▼ 132 – 500 кВт:



Обозначение	Функция
R, S, T	Клеммы подключения к питающей сети
U, V, W	Выходные клеммы питания двигателя
DC+, DC-	Клеммы цепи постоянного тока
	Заземление

▼ 560 – 630 кВт:

Обозначение	Функция
R, S, T	Клеммы подключения к питающей сети
U, V, W	Выходные клеммы питания двигателя
DC+, DC-	Клеммы цепи постоянного тока
	Заземление

2.2.3.2. Рекомендуемые характеристики подключения силовых клемм

Модель ПЧ	Сечение кабе- ля питания (мм²)	Сечение моторного кабеля (мм²)	Винты клемм силовых кабе- лей	Момент затяж- ки силовых ка- белей (Н∙м)	Винты за- земления	Момент затяжки винтов заземле- ния (Н·м)
AD800P-4TD75-PU0PCU0P	1	1	M3	0.5-0.7	M4	1.0-1.2
AD800P-4T1D5-PU0PCU0P	1	1	M3	0.5-0.7	M4	1.0-1.2
AD800P-4T2D2-PU0PCU0P	1	1	M3	0.5-0.7	M4	1.0-1.2
AD800P-4T4D0-PU0PCU0P	1.5	1.5	M3	0.5-0.7	M4	1.0-1.2
AD800P-4T5D5-PU0PCU0P	1.5	1.5	M3	0.5-0.7	M4	1.0-1.2
AD800P-4T7D5-PU0PCU0P	2.5	1.5	M3	0.5-0.7	M4	1.0-1.2
AD800P-4T011-PU0PCU0P	4	2.5	M5	1.6-2.0	M5	1.6-2.0
AD800P-4T015-PU0PCU0P	6	4	M5	1.6-2.0	M5	1.6-2.0
AD800P-4T018-PU0PCU0P	10	4	M5	1.6-2.0	M5	1.6-2.0
AD800P-4T022-PU0PCU0P	10	6	M5	1.6-2.0	M5	1.6-2.0
AD800P-4T030-PU0PCU0P	10	6	M5	1.6-2.0	M5	1.6-2.0
AD800P-4T037-PU0PCU0P	10	10	M6	2.0-2.5	M6	2.0-2.5
AD800P-4T045-PU0PCU0P	16	16	M6	2.0-2.5	M6	2.0-2.5
AD800P-4T055-PU0PCU0P	16	16	M6	2.0-2.5	M6	2.0-2.5
AD800P-4T075-PU0PCU0P	25	25	M8	8-10	M6	2.0-2.5
AD800P-4T090-PU0PCU0P	35	35	M8	8-10	M6	2.0-2.5
AD800P-4T110-PU0PCU0P	70	70	M8	8-10	M6	2.0-2.5
AD800P-4T132-PU0PCU0P	95	95	Вход М12 Выход М10*2	Вход 20-25 Выход 12-16	2*M10	12-16
AD800P-4T160-PU0PCU0P	120	120	Вход М12 Выход М10*2	Вход 20-25 Выход 12-16	2*M10	12-16
AD800P-4T185-PU0PCU0P	150	150	Вход М12 Выход М10*2	Вход 20-25 Выход 12-16	2*M10	12-16
AD800P-4T200-PU0PCU0P	2*70	2*70	2*M12	30-38	2*M10	12-16
AD800P-4T220-PU0PCU0P	2*95	2*95	2*M12	30-38	2*M10	12-16
AD800P-4T250-PU0PCU0P	2*95	2*95	2*M12	30-38	2*M10	12-16
AD800P-4T280-PU0PCU0P	2*120	2*120	2*M12	30-38	2*M10	12-16
AD800P-4T315-PU0PCU0P	2*120	2*120	2*M12	30-38	2*M10	12-16
AD800P-4T355-PU0PCU0P	2*150	2*150	2*M12	30-38	2*M10	12-16
AD800P-4T415-PU0PCU0P	2*185	2*185	2*M12	30-38	2*M10	12-16
AD800P-4T450-PU0PCU0P	2*240	2*240	2*M12	30-38	2*M10	12-16
AD800P-4T500-PU0PCU0P	2*240	2*240	2*M12	30-38	2*M10	12-16
AD800P-4T560-PU0PCU0P	2*240	2*240	2*M12	30-38	2*M10	12-16
AD800P-4T630-PU0PCU0P	4*120	4*120	2*M12	30-38	2*M12	30-38

Примечание: Рекомендуемые характеристики основаны на окружающей температуре 25°C, работе в тяжелом режиме и использовании одножильного кабеля типа VV. См. локальные стандарты для других условий применения.

2.2.3.3. Рекомендации по выбору дифференциальных автоматов

При установке дифференциального автомата между источником питания и входом ПЧ (R/L, S/N, T) учитывайте ток утечки, существующий даже при нормальной работе. Во время работы ПЧ ток утечки может генерироваться из перечисленных ниже источников, причем ток утечки генерируется, даже если нет никаких неполадок в работе:

Ток гармонических составляющих ШИМ на выходе ПЧ через паразитные емкости между моторным кабелем двигателя и землей и между обмоткой и корпусом двигателя.

Остаточный ток, возникающий из-за дисбаланса источника питания сети или различия конденсаторов фильтра ЭМС, проходящий через заземляющие конденсаторы.

Для применения с преобразователем частоты следует применять дифференциальный автомат (срабатывающий только на ток низкой частоты) с номинальным током утечки выше 10 мА.

Если выбран обычный автоматический выключатель, номинальный ток утечки должен быть выше 200 мА, а время срабатывания должно быть более 0,1 секунды.

2.2.4. Электромагнитная совместимость для электрических подключений

2.2.4.1. Стандарты ЭМС

ПЧ серии AD800P соответствуют стандартам IEC: IEC/EN61800-3 (Системы электропривода с регулируемой скоростью, часть 3: требования по электромагнитной совместимости и специальные методы испытаний).

В стандарте IEC/EN61800-3 требования к электромагнитной совместимости определяются в двух аспектах: определение электромагнитных помех и помехоустойчивость. ЭМС помехи включают излучение, кондуктивное излучение и излучение тока низкой частоты. Устойчивость в ЭМС включает помехоустойчивость по излучению, проводимости, им-

пульсным помехам, выбросам, ESD и низкочастотным помехам от сетевого источника питания (провалы напряжения, скачки, провисания и колебания, дисбаланс, искажения и изменение частоты). AD800P отвечает всем требованиям, кроме:

Для соответствия IEC 61000-3-2/IEC 61000-3-12 для ПЧ мощностью менее 30 кВт необходим внешний сетевой дроссель (см. 2.2.2.3).

Внешний ЭМС фильтр необходим для соответствия классам С1 или С2 (IEC 61800-3) по кондуктивным излучениям (см. 2.2.2.4). Если не установлен внешний ЭМС фильтр, ПЧ серии AD800P не предназначены для использования в низковольтной сети общего пользования, которая напрямую обслуживает бытовые применения.

2.2.4.2. Руководство по снижению ЭМС помех

Несмотря на то, что ЭМС фильтр встроен в AD800P и определенно ограничивает помехи по проводам, в зависимости от чувствительности оборудования и фона окружающей среды, остается вероятность влияния помех на соседнее оборудование. Если это происходит, рекомендуется принять следующие меры:

Установите внешний ЭМС фильтр перед входом ПЧ.

Установите фильтр сети питания перед оборудованием, чувствительным к помехам ЭМС.

Изолируйте сеть питания ПЧ от оборудования, чувствительного к помехам ЭМС, обычно с помощью изолирующего трансформатора.

Используйте экранированный провод для сигналов управления и экранированный кабель для двигателя, правильно заземлите экран.

Избегайте прокладки линий управляющих сигналов параллельно силовым линиям, особенно избегайте укладки управляющих проводов и силовых кабелей в единый жгут. Если невозможно избежать близкой прокладки проводов управления и кабеля питания, пожалуйста, расположите провода перпендикулярно.

Если надежной точки заземления или экранированного кабеля двигателя нет, используйте дополнительный провод для подключения корпуса двигателя к клемме PE и расположите этот провод вместе с кабелями 3 фаз двигателя как можно ближе и плотнее.

Установка ферритовых колец на входе и/или выходе ПЧ в большинстве случаев помогает решить проблему электромагнитных помех.

2.2.4.3. Снижение тока утечки

Как указано в п. 2.2.3.4, существуют различные причины возникновения тока утечки. Проблема с током утечки должна решаться во избежание неправильной работы дифференциального автомата или создания помех другому оборудованию. Ниже приведены рекомендации по снижению тока утечки:

Уменьшите частоту коммутации и используйте как можно более короткий моторный кабель, чтобы снизить ток утечки высокой частоты;

Установите моторный дроссель или синус-фильтр на выходе ПЧ;

Примите меры по снижению дисбаланса источника питания.

2.2.4.4. Снижение наведенного напряжения

В случае отсутствия заземления на корпус двигателя или на металлические элементы, подсоединенные к корпусу двигателя, может быть наведено индуктивное напряжение. Подключение корпуса двигателя к клемме РЕ преобразователя помогает снизить уровень этого напряжения. Но единственный безопасный способ — правильно заземлить двигатель и ПЧ.

2.2.4.5. Заземление

Заземлите элементы системы:

Используйте толстый провод для заземления, чтобы уменьшить сопротивление линии заземления;

Используйте как можно более короткий заземляющий провод;

Точка заземления должна быть на минимальном расстоянии от ПЧ;

Используйте четырехпроводный моторный кабель, подключите корпус двигателя к клемме РЕ ПЧ с помощью одного из четырех проводов и заземлите этот провод;

Размещайте заземляющие провода вдали от входов / выходов оборудования, чувствительного к электромагнитным помехам.

2.3. Список параметров

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение			
метр	Группа параметров 0: Основные режимы управления и команды						
P0-01	Режим управления	0: Бездатчиковый режим управления скоростью 1: Режим управления скоростью с энкодером 2: Бездатчиковый режим управления моментом 3: Режим управления моментом с энкодером		0			
*P0-02	Принцип управления двигателем	0: V/F 1: Векторное управление 1 2: Векторное управление 2		1			
P0-03	Макросы	0: Не используются 1: Насосное применение 2: Простой ПЛК					
*P0-04	Характеристики момента	0: СТ (постоянный) 1: VT (переменный) 9: AEO (оптимизация энергопотребления)		0			
*P0-05	Направление вращения двигателя	0: По часовой стрелке 1: Против часовой стрелки 2: Оба направления		2			
P0-09	Выбор направления вращения	0: Прямое вращение 1: Обратное вращение		0			
P0-10	Выбор источника задания скорости	 О: Основной источник задания Приоритет предустановленных значений Комбинация основного и дополнительного источников задания (РО-14). Переключение между основным и дополнительным источниками задания. Переключение между основным источником и комбинацией основного и дополнительного источников задания. Переключение между дополнительным источником и комбинацией основного и дополнительным источником и комбинацией основного и дополнительного источников задания. 		2			
P0-11	Основной источник задания	0: Нет 1: Аналоговый вход AI1 2: Аналоговый вход AI2 3: Аналоговый вход MI1 4: Аналоговый вход MI2 5: Импульсный вход 10: Предустановленное значение 0 + БОЛЬ-ШЕ/МЕНЬШЕ 11: Предустановленные значения 20: По последовательной связи 21: ПИД-регулятор процесса 30: Пульт		1			
P0-12	Дополнительный источник задания	Аналогично РО-11		20			
P0-13	Источник задания момента в режиме управления моментом	Аналогично РО-11		1			
P0-14	Комбинация основного и дополни- тельного источников	0: Основной + дополнительный 1: Основной — дополнительный 2: Максимальный из основного и дополнительного 3: Минимальный из основного и дополнительного		0			
P0-15	Диапазон задания скорости	0: 0~P0-16 1: -P0-16~P0-16		0			
P0-16	Базовое значение задания скорости	0.0~590.0		50.0			

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
		0: Клеммы или последовательная связь		
P0-17	Источник команд управления	1: Клеммы		0
		2: Последовательная связь		
	Выбор источника команд управле-	0: Нет		
P0-18	ния по последовательной связи	1: Встроенный RS485		1
	пил по последовательной связи	2: Шина с платы расширения		
	Разрешение переключения источни-	0: Запрещено		
P0-29	ка команд управления сигналом на	1: Разрешено		0
	дискретном входе	·	- 4	
P0-30	Предустановленное значение 0	-100.00~100.00	%	0.00
P0-31	Предустановленное значение 1	-100.00~100.00	%	0.00
P0-32	Предустановленное значение 2	-100.00~100.00	%	0.00
P0-33	Предустановленное значение 3	-100.00~100.00	%	0.00
P0-34	Предустановленное значение 4	-100.00~100.00	%	0.00
P0-35	Предустановленное значение 5	-100.00~100.00	%	0.00
P0-36	Предустановленное значение 6	-100.00~100.00	%	0.00
P0-37	Предустановленное значение 7	-100.00~100.00	%	0.00
P0-38	Предустановленное значение 8	-100.00~100.00	%	0.00
P0-39	Предустановленное значение 9	-100.00~100.00	%	0.00
P0-40	Предустановленное значение 10	-100.00~100.00	%	0.00
P0-41	Предустановленное значение 11	-100.00~100.00	%	0.00
P0-42	Предустановленное значение 12	-100.00~100.00	%	0.00
P0-43	Предустановленное значение 13	-100.00~100.00	%	0.00
P0-44	Предустановленное значение 14	-100.00~100.00	%	0.00
P0-45	Предустановленное значение 15	-100.00~100.00	%	0.00
P0-46	Значение шага БОЛЬШЕ/МЕНЬШЕ	0.01~100.00	%	0.10
DO 47	Сохранение значения, накопленного	0: Не сохранять		
P0-47	сигналами БОЛЬШЕ/МЕНЬШЕ	1: Сохранять при останове		0
DO 49	Cupacity to suvere powers	2: Сохранять при отключении питания	F.,	F 0
P0-48	Скорость толчкового режима	0.0~400.0 Гц	Гц	5.0
P0-49	Разрешение времени разго- на/замедления	0: 0.1 сек	сек	1
	на/замедления	1: 0.01 сек 0: Линейный		
P0-50	Тип разгона/замедления 1	1: S-образный		0
P0-51	Время разгона 1	0.01~655.35/0.1~6553.5	сек	*
P0-52	Время замедления 1	0.01~655.35/0.1~6553.5	сек	*
10 32		0: Линейный	CCK	
P0-53	Тип разгона/замедления 2	1: S-образный		0
P0-54	Время разгона 2	0.01~655.35/0.1~6553.5	сек	*
P0-55	Время замедления 2	0.01~655.35/0.1~6553.5	сек	*
		0: Линейный		
P0-56	Тип разгона/замедления 3	1: S-образный		0
P0-57	Время разгона 3	0.01~655.35/0.1~6553.5	сек	*
P0-58	Время замедления 3	0.01~655.35/0.1~6553.5	сек	*
		0: Линейный		
P0-59	Тип разгона/замедления 4	1: S-образный		0
P0-60	Время разгона 4	0.01~655.35/0.1~6553.5	сек	*
P0-61	Время замедления 4	0.01~655.35/0.1~6553.5	сек	*
P0-62	Время разгона/замедления толчкового режима	0.01~655.35/0.1~6553.5	сек	*
P0-63	Время S-образного разгона в начале	0.01~655.35/0.1~6553.5	сек	*
P0-64	Время S-образного разгона в конце	0.01~655.35/0.1~6553.5	сек	*
P0-65	Время S-образного замедления в начале	0.01~655.35/0.1~6553.5	сек	*
P0-66	Время S-образного замедления в конце	0.01~655.35/0.1~6553.5	сек	*
	•			•

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P0-80	Локальный адрес ПЧ	1~127		1
P0-81	Скорость обмена данными	0: 2400 1: 4800 2: 9600 3: 19200	бит/с	2
		4: 38400 5~9: Зарезервированы		
P0-82	Формат данных последовательной связи (бит четности / стоп-бит)	0: Четный (1 стоп-бит) 1: Нечетный (1 стоп-бит) 2: Нет четности (1 стоп-бит) 3: Нет четности (2 стоп-бита)		0
P0-83	Мин. задержка отклика при связи	0.000~0.500	сек	0.002
P0-84	Макс. задержка отклика при связи	0.010~10.000	сек	5.000
P0-85	Сообщение отклика	0: Нормальный отклик 1: Некорректная команда 2: Без отклика		0
P0-86	Сохранение параметра, заданного по последовательной связи, при от-ключении питания	0: Параметр не сохраняется 1: Параметр сохраняется		0
P0-87	Терминальный резистор	0: Отключен 1: Подключен		0
P0-88	Тайм-аут при последовательной свя- зи	0.01~650.00	сек	1.00
P0-89	Действие при превышении тайма аута в процессе последовательной связи	0: Нет 2: Останов двигателя 3: Толчковый режим и предупреждение 4: Работа на максимальной частоте P5-03 5: Сигнал аварии и останов выбегом 6: Предупреждение		0
P0-90	Сброс паузы последовательной свя- зи	0: Нет 1: Сброс паузы		0
Группа па	раметров 1: Основные параметры упра	авления ПЧ и двигателем		
P1-00	Частота ШИМ	2~16: 2~16 кГц		*
*P1-01	Параметры сети	2: 200-240B/50Гц 12: 380-440B/50Гц 22: 440-480B/50Гц 102: 220-240B/60Гц 112: 380-440B/60Гц 122: 440-480B/60Гц		*
*P1-02	Тип двигателя	0: Асинхронный 1: Синхронный с поверхностными магнитами (SPM) 2: Синхронный с заглубленными магнитами (IPM) без насыщения 3: Синхронный с заглубленными магнитами (IPM) с насыщением		0
*P1-03	Номинальная мощность двигателя	0.12~450	кВт	*
*P1-04	Номинальное напряжение двигате- ля	50~1000	В	*
*P1-05	Номинальная частота двигателя	20~400	Гц	*
*P1-06	Номинальный ток двигателя	0.1~1200	Α	*
*P1-07	Номинальная скорость двигателя	100~24000	Об/	*
*P1-08	Номинальный момент двигателя	0.1~6553.5	H·M	*

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
		0: Нет		
*P1-13	Автонастройка двигателя	1: Быстрая статическая автонастройка 2: Полная статическая автонастройка		0
*P1-14	Сопротивление статора (Rs)	0.001~65.535	Ω	*
*P1-15	Сопротивление ротора (Rr)	0.001~65.535	Ω	*
*P1-16	Реактивное сопротивление утечки на статоре (X1)	0.001~65.535	Ω	*
*P1-17	Общее реактивное сопротивление (Xh)	0.01~655.35	Ω	*
*P1-18	Индуктивность Ld, оси D (двиг. с ПМ)	0.01~655.35	мГн	*
*P1-19	Индуктивность Lq, оси Q (двиг. с ПМ)	0.01~655.35	мГн	*
*P1-20	Насыщенная индуктивность Ld-s, оси D (двиг. с ПМ)	0.01~655.35	мГн	*
*P1-21	Насыщенная индуктивность Lq-s, оси Q (двиг. с ПМ)	0.01~655.35	мГн	*
*P1-22	Ток насыщения оси D для Ld-s	20~200	%	100
*P1-23	Ток насыщения оси Q для Lq-s	20~200	%	100
*P1-24	Число полюсов двигателя Противо-ЭДС на номинальной ско-	2~100	шт.	4
*P1-25	рости для двигателей с ПМ	0~9000	В	*
*P1-26	Длина моторного кабеля	0~150	M	10
*P1-27	Инерция системы	0.00~655.35	кг∙м2	*
P1-32	Коэффициент компенсации нагрузки на низкой скорости	0~199	%	100
P1-33	Коэффициент компенсации нагрузки на высокой скорости	0~199	%	100
P1-34	Ток намагничивания двигателя на нулевой скорости	0~300	%	100
P1-35	Минимальная частота для нормаль- ного тока намагничивания двигателя	0.0~10.0	Гц	0.0
P1-36	Минимальный ток двигателя на низ- кой скорости	0~120	%	80
P1-37	Компенсация скольжения	-400~399	%	*
P1-38	Постоянная времени компенсации скольжения	0.05~5.00	сек	*
P1-39	Коэффициент демпфирования резонанса	0~5000	%	*
P1-40	Постоянная времени фильтра демпфирования резонанса	0.005~0.050	сек	0.005
P1-41	Коэффициент демпфирования для двигателей с постоянными магнита-ми	0~5000	%	120
P1-42	Постоянная времени демпфирования для низкой скорости (двигатели с ПМ)	0.01~20.00	сек	0.8
P1-43	Постоянная времени демпфирования для высокой скорости (двигатели с ПМ)	0.01~20.00	сек	0.8
P1-44	Постоянная времени токового фильтра (двигатели с ПМ)	0.001~1.000	сек	0.5
P1-45	Минимальный пусковой момент в режиме управления моментом	-100~100	%	5
P1-46	Минимальная скорость отсечки мо- мента при пуске в режиме управле- ния моментом	0.1~50.0	Гц	3.0
P1-53/ P1-55/	Напряжение точек V/F кривой	0.0~999.9	В	*

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P1-57/				
P1-59/				
P1-61 P1-54/				
P1-54/ P1-56/				
P1-58/	Частота точек V/F кривой	0.0~590.0	Гц	*
P1-60/	, ,		'	
P1-62				
P1-63	Метод пуска двигателей с ПМ	0: Определение начальной позиции (IPD) 1: Возврат в начальную позицию		1
*P1-64	Метод пуска асинхронных двигате- лей	0: Прямой пуск 1: Подхват вращающегося двигателя		0
P1-67	Минимальная допустимая частота	0.00~50.00	Гц	0.1
P1-68	Диапазон пропуска низких частот	0.0~20.0	Гц	0.0
P1-70	Время задержки пуска	0.0~10.0	сек	0.0
P1-71	Работа во время задержки	0: Двигатель на выбеге 1: Удержание постоянным током		0
P1-72	Постоянный ток удержания	0~150	%	50
P1-79	Метод останова в режиме управле-	0: Останов в режиме управления моментом		0
	ния моментом	1: Останов в режиме управления скоростью		
P1-80	Способ останова после завершения	0: Двигатель на выбеге		0
P1-81	замедления Частота включения удержания по- стоянным током	1: Удержание постоянным током 0.0~400.0	Гц	0.0
P1-82	Постоянный ток торможения (асин- хронные двигатели)	0~150	%	50
P1-83	Время торможения постоянным током (асинхронные двигатели)	0.0~60.0	сек	2
P1-84	Частота включения торможения по- стоянным током (асинхронные дви- гатели)	0.0~400.0	Гц	0.0
P1-85	Время размагничивания перед тор- можением постоянным током	0~100	%	100
P1-86	Ток возврата в начальную позицию (пуск двигателей с ПМ)	0~150	%	80
P1-87	Время возврата в начальную позицию (пуск двигателей с ПМ)	0.1~60.0	сек	3.0
P1-91	Функция торможения	0: Нет 1: Тормозной резистор 2: Торможение переменным током		0
P1-92	Максимальный ток торможения переменным током	0~150	%	100
P1-93	Усиление для торможения пере- менным током	1.0~2.0		1.4
P1-94	Напряжение в цепи постоянного тока, при котором включается тормозной резистор	Зависит от сети питания	В	*
P1-95	Сопротивление тормозн. резистора	5~65535	Ω	*
P1-97	Ток отпускания механического тор- моза		А	0
P1-98	Частота наложения механического тормоза		Гц	0
Группа па	раметров 2: Функции дискретных вход	ов/выходов		
P2-00	Выбор положительной/ отрицательной логики для дискретных входов	0~65535		0

Пара-	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
метр Р2-01	Выбор положительной/ отрицательной логики для дискретных и релейных выходов	0~65535	PISIVI.	О
P2-02	Режим дискретных входов	0: NPN 1: PNP		0
P2-03	Пуск/стоп одним импульсным сиг-	0: Запрещен 1: Разрешен		0
P2-04	Постоянная времени фильтра дис- кретных входов	2~16	мс	4
P2-05	Функция дискретного входа FWD	0: Нет функции		10
P2-06	Функция дискретного входа REV	1: Сброс		12
P2-07	Функция дискретного входа DI1	2: Останов на выбеге (отрицательная логика)		22
P2-08	Функция дискретного входа DI2	3: Останов на выбеге и сброс (отрицательная		23
P2-09	Функция дискретного входа DI3	4: Останов (отрицательная логика) 10: Пуск вперед 11: Реверс 12: Пуск назад 13: Пуск вперед сигналом без фиксации 14: Пуск назад сигналом без фиксации 15: Толчковый режим вперед 16: Толчковый режим назад 17: Останов сигналом без фиксации 20: Запрет работы вперед 21: Запрет работы назад 22: Выбор предустановленного значения, бит 1 23: Выбор предустановленного значения, бит 2 24: Выбор предустановленного значения, бит 3 25: Выбор предустановленного значения, бит 4 26: Выбор времени разгона/замедления, бит 1 27: Выбор времени разгона/замедления, бит 2 30: Увеличение скорости 31: Снижение скорости 32: Счетчик А 34: Сброс счетчика А 35: Счетчик В 37: Сброс счетчика В 40: Импульсный вход 41: Переключение источника задания 42: Переключение режимов скорости/момента 50: Вход сигнала о внешней ошибке 51: Фиксация выхода ПИД-регулятора 64: Пуск для макроса "Насосное применение" 65: Очистка насоса 66: Пожарный режим с командой пуск 67: Пожарный режим без команды пуск		24
P2-21	Действия при поступлении на дис- кретный вход сигнала ошибки	2: Останов и предупреждающий сигнал 3: Работа на скорости толчкового режима и предупреждающий сигнал 4: Работа на максимальной скорости (Р5-03) и предупреждающий сигнал 5: Аварийный сигнал и плавный останов 6: Предупреждающий сигнал 7: Аварийный сигнал и останов на выбеге 8: Аварийный сигнал подается только во время работы привода, двигатель останавливается на выбеге		0

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P2-22	Выбор функции дискретного выхода DO1	1: Нат плату управления ПЧ подано питание 2: ПЧ готов к работе в удаленном режиме 3: ПЧ готов к работе и остановлен; 4: ПЧ работает; 5: ПЧ работает, предупреждений нет; 6: Работа в допустимом диапазоне тока 7: Заданная частота достигнута (±0.3 Гц) 8: Обратное вращение 10: Аварийный сигнал 11: Аварийный сигнал 11: Аварийный сигнал или предупреждение 12: Предупреждение о перегреве 13: ПЧ готов к работе в удаленном режиме, предупреждение о перегреве отсутствует 14: ПЧ готов к работе в удаленном режиме, предупреждение о перегреве отсутствует 15: Связь по шине связи работает нормально 20: Ток вне допустимых пределов 21: Выходной ток ниже Р5-09 22: Выходной ток больше Р5-10 23: Выходная частота вне допустимых пределов 24: Выходная частота выше Р5-11 25: Выходная частота выше Р5-12 26: Обратная связь вне допустимых пределов 27: Обратная связь вне допустимых пределов 30: Задание в ре допустимых пределов 30: Задание в допустимых пределов 30: Задание в ре допустимых пределов 30: Зарание в ре допустимых преде		0
P2-23	Выбор функции дискретного выхода DO2	Аналогично P2-22		
P2-24	Выбор функции дискретного выхода DO3	Аналогично P2-22		
P2-25	Выбор функции дискретного выхода DO4	Аналогично P2-22		
P2-26	Выбор функции дискретного выхода DO5	Аналогично P2-22		
P2-28	Выбор функции реле RL1	Аналогично Р2-22		10

Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское			
метр Р2-29	Задержка включения реле RL1	0.00~600.00	изм.	3начение 0.00			
P2-30	Задержка выключения реле RL1	0.00~600.00	сек	0.00			
P2-31	Выбор функции реле RL2	Аналогично Р2-22	CCK	0.00			
P2-32	Задержка включения реле RL2	0.00~600.00	сек	0.00			
P2-33	Задержка выключения реле RL2	0.00~600.00	сек	0.00			
P2-40	Задержка выключении реле кс2 Задержка реакции на сигналы Больше/Меньше	2~60000	MC	4			
P2-46	Сохранение значения на счетчике (дискретный вход) при отключении питания	0: Не сохраняется 1: Сохранение счетчика А 2: Сохранение счетчика В 3: Сохранение обоих счетчиков А и В		0			
P2-47	Порог счетчика А	1~65535		65535			
P2-48	Порог счетчика В	1~65535		65535			
P2-50	Мин. частота импульсного входа	0.00~P2-51	кГц	0.00			
P2-51	Макс. частота импульсного входа	P2-50~100.00	кГц	50.00			
P2-52	Значение задания / обратной связи при минимальной частоте импульсного входа	-200.00~200.00	%	0.00			
P2-53	Значение задания / обратной связи при максимальной частоте импульсного входа	-200.00~200.00	%	100.00			
P2-54	Время фильтрации для импульсного входа	1~1000	MC	100			
P2-60	Выбор функции импульсного выхода	0: Дискретный выход 1: Выходная частота 2: Выходной ток 3: Выходная мощность 4: Скорость двигателя 5: Выходное напряжение 10: Задание значения 11: Значение обратной связи 13: Задание значения по шине 14: Входная частота импульсного входа 1 15: Значение на аналоговом входе AI1 16: Значение на аналоговом входе AI2 20: Напряжение на шине постоянного тока 30: Выходной момент		0			
P2-61	Минимальная частота импульсного выхода	0.00~P2-62	кГц	0.00			
P2-62	Максимальная частота импульсного выхода	P2-61~100.00	кГц	50.00			
P2-63	Значение сигнала на выходе при минимальной частоте импульсного выхода	0.00~200.00	%	0.00			
P2-64	Значение сигнала на выходе при максимальной частоте импульсного выхода	0.00~200.00	%	100.00			
P2-70	Разрешение энкодера	0~32767		1024			
P2-71	Направление вращения энкодера	0: по часовой стрелке 1: против часовой стрелки		0			
P2-72	Делитель	1~255		1			
	Группа параметров 3: Функции аналоговых входов/выходов						
P3-00	Тип сигнала на аналоговом входе - Al1	0: Аналоговый по напряжению 1: Аналоговый по току		0			
P3-01	Время фильтрации для аналогового входа AI1	0.00~10.00	сек	0.01			

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P3-02	Зона нулевого сигнала для аналого- вого входа AI1	0.00~20.00	В/мА	0.00
P3-03	Минимальное входное напряжение для аналогового входа AI1	0.00~P3-04	В	0.00
P3-04	Максимальное входное напряжение для аналогового входа AI1	P3-03~10.00	В	10.00
P3-05	Минимальный входной ток для ана- логового входа Al1	0.00~ P3-06	мА	0.00
P3-06	Максимальный входной ток для аналогового входа AI1	P3-05~20.00	мА	20.00
P3-07	Значение сигнала на входе при минимальном токе / напряжении на входе Al1	-200.00~200.00	%	0.00
P3-08	Значение сигнала на входе при мак- симальном токе / напряжении на входе AI1	-200.00~200.00	%	100.00
P3-09	Тип сигнала на аналоговом входе – Al2	0: Аналоговый по напряжению 1: Аналоговый по току		1
P3-10	Время фильтрации для аналогового входа AI2	0.00~10.00	сек	0.01
P3-11	Зона нулевого сигнала для аналогового входа AI2	0.00~20.00	В/мА	0.00
P3-12	Минимальное входное напряжение для аналогового входа AI2	0.00~P3-13	В	0.00
P3-13	Максимальное входное напряжение для аналогового входа AI2	P3-12~10.00	В	10.00
P3-14	Минимальный входной ток для ана- логового входа AI2	P3-15~19.99	мА	0.00
P3-15	Максимальный входной ток для аналогового входа AI2	P3-14~20.00	мА	20.00
P3-16	Значение сигнала на входе при минимальном токе / напряжении на входе AI2	-200.00~200.00	%	0.00
P3-17	Значение сигнала на входе при мак- симальном токе / напряжении на входе AI2	-200.00~200.00	%	100.00
P3-48	Время задержки определения снижения аналогового сигнала нижеминимального значения	1~99	сек	10
P3-49	Действие при снижении аналогового сигнала ниже минимального значения	0: Нет 2: Останов и предупреждающий сигнал 3: Толчковый режим и предупреждающий сигнал 4: Работа на максимальной скорости (Р5-03) и предупреждающий сигнал 5: Аварийный сигнал и останов на выбеге 6: Предупреждающий сигнал		0
P3-50	Тип сигнала — аналоговый выход AO1	0: 0~20 mA 1: 4~20 mA 3: 0~10 B		3
P3-51	Выбор функции— аналоговый выход AO1	0: Нет функции 1: Выходная частота 2: Выходной ток 3: Выходная мощность 4: Скорость двигателя 5: Выходное напряжение 10: Значение задания		0

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
		11: Значение обратной связи 13: Задание значения по шине 14: Входная частота импульсного входа 1 15: Значение на аналоговом входе AI1 16: Значение на аналоговом входе AI2 20: Напряжение на шине постоянного тока 30: Выходной момент		
P3-52	Значение сигнала при минимальном токе / напряжении на выходе AO1	0.00~200.00	%	0.00
P3-53	Значение сигнала при минимальном токе / напряжении на выходе AO1	0.00~200.00	%	100.00
P3-54	Мин. выходные напряжение/ток – аналоговый выход AO1	0.00~P3-55		0.00 /4.00
P3-55	Макс. выходные напряжение/ток – аналоговый выход AO1	P3-54~10.00/20.00		10.00 /20.00
P3-68	Минимально задаваемое значение с пульта управления	-200.00~200.00	%	0.00
P3-69	Максимально задаваемое значение с пульта управления	-200.00~200.00	%	100.00
P3-90	Разрешение использования анало- говых входов как дискретных 1: дискретные входы			0
P3-91	Выбор функции AI1 как DI	Аналогично Р2-05		0
P3-92	Выбор функции AI2 как DI	Аналогично P2-05		0
Группа па	раметров 4: ПИД-регулятор процесса и	прочие контроллеры		
P4-00	Источник сигнала обратной связи ПИД-регулятора процесса (регулирование давления, расхода по внешнему датчику)	0: Нет 1: Аналоговый вход Al1 2: Аналоговый вход Al2 3: Аналоговый вход Ml1(опция) 4: Аналоговый вход Ml2 (опция) 5: Импульсный вход 1 20: Последовательная связь 31: Выходной ток 32: Выходной момент 33: Напряжение на шине постоянного тока		0
P4-01	Источник сигнала задания ПИД- регулятора процесса	0: Нет 1: Аналоговый вход Al1 2: Аналоговый вход Al2 3: Аналоговый вход Ml1(опция) 4: Аналоговый вход Ml2 (опция) 5: Импульсный вход 1 10: Предустановленное значение 0, изменение сигналами Больше/Меньше 11: Предустановленные значения 20: Последовательная связь 30: С пульта управления		0
P4-02	Базовое значение для сигналов за- дания и обратной связи ПИД- регулятора процесса	0.0~3000.0		50.0
P4-04	Логика управления ПИД- регулированием процесса	0: Положительная (отрицат. обратная связь) 1: Отрицательная (положит. обратная связь)		0
P4-05	Ограничение интегральной состав- ляющей ПИД-регулирования про- цесса	0: Отключено 1: Включено		1
P4-06	Минимальная частота при управлении скоростью от ПИД-регулятора процесса	0.0~200.0	Гц	0.0

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P4-07	Пропорциональный коэффициент ПИД 1 (процесс)	0.0~10.00		0.30
P4-08	Интегральный коэффициент ПИД- регулятора процесса	0.01~655.35	сек	10.00
P4-09	Дифференциальный коэффициент ПИД-регулятора процесса	0.00~10.00	сек	0.00
P4-13	Предел дифференцирования	1.0~50.0		5.0
P4-14	Максимально допустимое расхож- дение сигналов задания и обратной связи для начала работы ПИД- регулятора процесса	0.0~200.0	%	0.1
P4-15	Изменение в работе ПИД-регулятора процесса при достижении значения расхождения Р4-14	0~2		0
P4-18	Нижний предел выходного сигнала ПИД-регулятора процесса	-100.00~100.00	%	0.00
P4-19	Верхний предел выходного сигнала ПИД-регулятора процесса	-100.00~100.00	%	100.00
P4-20	Источник ограничения максимального значения выхода ПИДрегулятора процесса	0~30		0
P4-22	Нижний предел интегральной со- ставляющей ПИД-регулятора про- цесса	-100.00~100.00	%	0.00
P4-23	Верхний предел интегральной со- ставляющей ПИД-регулятора про- цесса	-100.00~100.00	%	100.00
P4-30	Пропорциональный коэффициент ПИД-регулятора скорости	0.000~1.000		0.010
P4-31	Интегральный коэффициент ПИД- регулятора скорости	2.0~2000.0	мс	8.0
P4-32	Дифференциальный коэффициент ПИД- регулятора скорости	0.0~200.0	сек	30.0
P4-33	Предел дифференцирования для ПИД- регулятора скорости	1.000~20.000		5.000
P4-34	Постоянная времени фильтра обратной связи ПИД-регулятора скорости	1.0~100.0	сек	10.0
P4-40	Пропорциональный коэффициент ПИ-регулятора момента	0~500	%	100
P4-41	Интегральный коэффициент ПИ- регулятора момента	0.002~2.000	сек	0.020
P4-51	Коэффициент усиления контроллера токоограничения (для двигателей с ПМ)	0~400	%	100
P4-52	Пропорциональный коэффициент контроллера токоограничения	0~500	%	100
P4-53	Интегральный коэффициент кон- троллера токоограничения	0.000~2.000	сек	0.020
P4-54	Постоянная времени фильтра кон- троллера токоограничения	2.0~100.0	MC	*
P4-61	Полоса пропускания ПИ-регулятора Isd	10~200	Гц	30
P4-62	Коэффициент демпфирования ПИ- регулятора lsd	1~200		100
P4-63	Коэффициент компенсации нагрузки ПИ- регулятора lsd	0.1~1.0		0.5

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P4-64	Полоса пропускания ПИ- регулятора Isq	0.01~1.00	Гц	0.03
P4-65	Коэффициент демпфирования ПИ- регулятора Isq	1~200		1
Группа па	раметров 5: Ограничения, защита и обн	наружение ошибок		
*P5-02	Нижний предел скорости двигателя	0.0~590.0	Гц	0.0
*P5-03	Верхний предел скорости двигателя	0.0~590.0	Гц	65.0
P5-04	Ограничение момента в двигатель- ном режиме	0~1000	%	160
P5-05	Ограничение момента в генератор- ном режиме	0~1000	%	160
P5-06	Источник задания ограничения скорости в режиме управления моментом	0: Нет 1: Аналоговый вход Al1 2: Аналоговый вход Al2 5: Импульсный вход 1 10: Предустановленное значение 0 + сигналы Больше/Меньше 11: Предустановленные значения 20: Шина последовательной связи 30: Пульт управления		0
P5-07	Ограничение максимального тока	0~300	%	*
*P5-08	Ограничение максимальной частоты	0.0~590.0	Гц	65.0
P5-09	Порог предупреждения о слабом токе	0.00~P9-16	А	0.0
P5-10	Порог предупреждения о перегрузке по току	0.00~P9-16	А	*
P5-11	Порог предупреждения о недоста- точной скорости	0.0~590.0	Гц	0.0
P5-12	Порог предупреждения о превышении скорости	0.1~590.0	Гц	65.0
P5-13	Порог предупреждения о низком заданном значении	-200.00~200.00	%	0.00
P5-14	Порог предупреждения о высоком заданном значении	-200.00~200.00	%	100.00
P5-15	Порог предупреждения о низком значении обратной связи	-200.00~200.00	%	0.00
P5-16	Порог предупреждения о высоком значении обратной связи	-200.00~200.00	%	100.00
*P5-17	Защита от потери фазы двигателем	0: Отключена 1: Стандартная чувствительность 2: Повышенная чувствительность		1
P5-18	Предупреждение о выходе за пределы ограничения тока / момента	0: Отключено 1: Включено		1
P5-19	Действие при потере сигнала обратной связи от энкодера	0: Нет 3: Толчковый режим и предупреждение 4: Работа на максимальной скорости, заданной в Р5-03, и предупреждение 5: Аварийный сигнал и останов на выбеге 11: Переключение в бездатчиковый режим управления		5
P5-20	Значение ошибки скорости для об- наружения потери сигнала от энко- дера	1~600	об/ мин	300
P5-21	Время обнаружения потери сигнала от энкодера	0.00~60.0	сек	0.05

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P5-22	Допустимая пауза при связи модуля управления с силовым модулем	0.10~60.00	сек	1.00
P5-23	Действие при превышении паузы связи	0: Нет 2: Останов и предупреждающий сигнал 3: Толчковый режим и предупреждающий сигнал 4: Работа на максимальной скорости (Р5-03) и предупреждающий сигнал 5: Аварийный сигнал и останов на выбеге 6: Предупреждающий сигнал		5
P5-26	Тепловая защита двигателя	0: Отключена 1: Предупреждение электронного термореле 2: Аварийный сигнал электронного термореле 3: Предупреждение электронного термореле для двигателя с самовентиляцией 4: Аварийный сигнал электронного термореле для двигателя с самовентиляцией		0
P5-27	Задержка включения тепловой за- щиты двигателя	0,1~60,0	мин	2,0
P5-28	Порог включения тепловой защиты двигателя	100~160	%	150
P5-29	Действие при потере фазы питания	0: Нет 1: Только предупреждение 2: Останов на выбеге и аварийный сигнал (тяжелая нагрузка) 3: Останов на выбеге и аварийный сигнал (средняя нагрузка) 4: Останов на выбеге и аварийный сигнал (легкая нагрузка)		3
P5-30	Блокировка предупреждений и сиг- налов аварии	0: Без блокировки: аварийный / тревожный сигнал сбрасывается без повторного включения питания 1: Блокировка: аварийный / тревожный сигнал сбрасывается только после повторного включения питания		1
P5-31	Время задержки аварийного сигнала по ограничению тока	0~60	сек	60
P5-32	Время задержки аварийного сигнала по ограничению момента	0~60	сек	60
P5-33	Действия при предупреждающем сигнале	0: Останов на выбеге и аварийный сигнал 1: Предупреждающий сигнал и подхват двига- теля после устранения причины		1
P5-34	Способ подхвата двигателя при пре- дупреждающем сигнале	0: Определение скорости (асинхронные и двигатели с ПМ) и определение угла (двигатели с ПМ) 1: Прямой перезапуск		0
P5-60	Контроль потери нагрузки двигателя	0: Отключен 1: Включен		0
P5-61	Порог определения потери нагрузки	0.1~200.0%		5%
P5-62	Задержка определения потери нагрузки	0.1~600.0 c	сек	1.0
Группа пар	раметров 6: Работа с пультом управлен	ия и дисплей пульта		
P6-03	Пользовательское значение нулевой скорости	0.0~6553.5		0.0
	Пользовательское значение макси-	0.0~6553.5		100.0
Р5-62 Группа пар	Задержка определения потери нагрузки раметров 6: Работа с пультом управлен Пользовательское значение нулевой скорости	0.1~600.0 с ния и дисплей пульта 0.0~6553.5	сек	0.0

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P6-05	Значение, отображаемое на дисплее	0~8191		0
P6-31	Локая нь й / удалонный роуки	0: Удаленный режим		0
P0-31	Локальный / удаленный режим	1: Локальный режим		U
DC 22	Durken dayayayayayaya EDEE	0: Нет функции		0
P6-32	Выбор функции кнопки FREE	1: Пуск назад		0
P6-34	22 FROT NO FOUTUN ORDUNA FORDAMOTROR	0: Отключен		0
P0-54	Запрет редактирования параметров	1: Включен (редактирование запрещено)		U
	Шаг изменения задания частоты с	0: 0,1 Гц		
P6-35	' '	1: 1 Гц		1
	пульта	2: 10 Гц		
P6-50	Коэффициент индикации скорости двигателя в параметре Р9-04	0.01~655.35		1.00
P6-51	Коэффициент индикации тока	0.01~655.35		1.00
P6-52	Коэффициент индикации мощности	0.01~655.35		1.00
_				l.
Группа па	раметров 7: Вспомогательные и специа	альные функции		
	CGnana	0: Нет		
	Сброс параметров на заводские	9: Сброс параметров на заводские настройки		
P7-00	настройки (кроме параметров дви-	(После выполнения команды выключить пита-		0
	гателя, последовательной связи, и	ние ПЧ, снова включить и сбросить ошибку А.01		
	параметра Р0-03)	кнопкой СТОП)		
		0: Продолжение работы с заданным до отклю-		
		чения питания значением		
		1: Работа не продолжается, заданное до отклю-		
	Функция при вилононии питания (О	чения питания значение сохранено		
P7-01	Функция при включении питания (0- 2: только для локального режима)	2: Работа не продолжается, заданное до от-		1
		ключения питания значение сбрасывается		
		3: Сохранение состояния работы / останова и		
		задания частоты в локальном и удаленном ре-		
		жиме		
*P7-10	Минимальная частота ШИМ	2~16	кГц	2
*P7-11	Коэффициент перемодуляции	90.0~115.0	%	100.0
*P7-12	Функция компенсации напряжения	0: Компенсация среднего напряжения		0
1 / 12	постоянного тока ШИМ	2: Компенсация пульсаций напряжения		Ů
P7-13	Компенсация напряжения постоян-	0: Отключена	1	1
. , 13	ного тока ШИМ при V/F управлении	1: Включена		
P7-14	Коэффициент коррекции времени	0~200	%	100
	бездействия (dead time)			
	Максимальная частота для коррек-		_	
P7-17	ции времени бездействия (dead	20~590	Гц	*
	time)			
		0: Нет		
		1: Пассивное снижение скорости		
		2: Пассивное снижение скорости, аварийное		
D7 36	Действие при падении напряжения	отключение	1	
P7-26	питания	3: Выбег и подхват двигателя		0
		4: Управление на рекуперации (КЕВ)		
		5: Управление на рекуперации (КЕВ), аварийное		
		отключение 6: Останов выбегом, аварийный сигнал		
	Порог запуска действия при падении	·	1	
P7-27	напряжения питания	100~220/380	В	*
	Коэффициент управления режимом			
P7-28		0~500	%	100
	рекуперации Время сброса счетчика попыток ав-			
P7-35	томатического сброса аварийного	0~6000	мин	0
17-33	сообщения		INIMI	
	оооощении	I	1	1

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P7-36	Способ сброса аварийного сообще- ния	0: Сброс по команде 1~10: Автоматический сброс от 1 до 10 раз 11: Автоматический сброс неограниченное чис- ло раз		0
P7-37	Время задержки автоматического сброса аварийного сообщения	0~600	сек	10
*P7-38	Уровень снижения напряжения в насосно-вентиляторных применениях (функция VT)	40~90	%	90
*P7-39	Минимальная намагниченность в AEO	40~75	%	66
P7-40	Коэффициент оптимизации намаг- ниченности (двигатели с ПМ)	-400~400	%	10
P7-41	Управление вентилятором охлаждения	0: Работа вместе с двигателем 4: По температуре радиатора 5: Постоянная работа		0
P7-46	Пороговое напряжение функции контроля перенапряжения (OVC)	Зависит от напряжения цепи питания	В	*
P7-47	Функция контроля перенапряжения (OVC)	Функция контроля перенапряжения 1. Видимы з в режиме 1		*
P7-48	Время интегрирования функции контроля перенапряжения (OVC)	0.01~0.10	сек	*
P7-49	Коэффициент пропорциональности функции контроля перенапряжения (OVC)	0~200	%	*
P7-50	Нижняя граница пропускаемой ча- стоты 1	0.0~590.0	Гц	0.0
P7-51	Верхняя граница пропускаемой ча- стоты 1	0.0~590.0	Гц	0.0
P7-52	Нижняя граница пропускаемой ча- стоты 2	0.0~590.0	Гц	0.0
P7-53	Верхняя граница пропускаемой ча- стоты 2	0.0~590.0	Гц	0.0
P7-54	Нижняя граница пропускаемой ча- стоты 3	0.0~590.0	Гц	0.0
P7-55	Верхняя граница пропускаемой ча- стоты 3	0.0~590.0	Гц	0.0
P7-60	Задержка автоперезапуска после включения питания	0~3600	С	0
Группа па	раметров 8: Основная и текущая инфор	омация		
P8-00	Версия прошивки силового модуля			
P8-01	Версия прошивки модуля управления			
P8-30	Полное число дней, когда подава- лось питание	0~9999	дни	
P8-31	Полное время работы	0~60000	Ч	
P8-32	Полная потребленная энергия	0~65535	кВт*ч	
P8-33	Количество включений питания	0~65535		
P8-34	Количество перегревов	0~65535		
P8-35	Количество перенапряжений	0~65535		
P8-36	Сброс счетчика потребленной энер- гии	0: Нет сброса 1: Сброс		0
P8-37	Сброс счетчика времени работы	0: Нет сброса 1: Сброс		0
P8-39	Полное время работы	0~60000 (не сбрасывается)	Ч	

Пара- метр	Наименование параметра Настройки параметра		Ед. изм.	Заводское значение
P8-40~ P8-49	Журнал аварий			
P8-50~ P8-59	Журнал предупреждений			
Группа па	раметров 9: Мониторинг состояния в р	еальном времени		
P9-00	Зарезервировано			
P9-01	Слово состояния	0~65535		
P9-02	Заданное значение	-4999.0~4999.0		
P9-04	Скорость двигателя	0~24000	Об/ мин	
P9-05	Выходная мощность	0.000~655.35	кВт	
P9-06	Выходное напряжение	0.0~6553.5	В	
P9-07	Выходная частота	0.0~590.0	Гц	
P9-08	Выходной ток	0.00~655.35	Α	
P9-09	Выходной момент	··		
P9-10	Состояние тепловой нагрузки двигателя	0~100	%	
P9-11	Напряжение на шине постоянного тока	0~65535	В	
P9-13	Температура радиатора или IGBT	-128~127	°C	
P9-14	Состояние тепловой нагрузки ПЧ	0~255	%	
P9-15	Номинальный ток ПЧ	0.0~6553.5	Α	
P9-16	Максимальный ток ПЧ	0.0~6553.5	Α	
P9-19	Заданное значение ПИД-регулятора	-200.0~200.0	%	
P9-20	Значение обратной связи ПИД-регулятора	-200.0~200.0	70	
P9-21	Выходной сигнал ПИД-регулятора	-200.0~200.0	%	
P9-22	Состояние дискретных входов	0~65535	/0	
P9-23	Тип аналогового входа Al1	0: 0~10 B		
DO 24	Dvo suo o quencimo un Al1	1: 0~20 MA	D / 1 1 1	
P9-24	Входное значение на AI1	0.00-20.00	В/мА	
P9-25	Тип аналогового входа AI2	0: 0~10 B 1: 0~20 mA		
P9-26	Входное значение на АІ2	0.00-20.00	В/мА	
P9-34	Входное значение на импульсном входе	-200.0~200.0	%	
P9-35	Частота на импульсном входе	0.00~100.00	кГц	
P9-37	Скорость по энкодеру		Об/ сек	
P9-38	Состояние дискретного выхода DO	0~255		
P9-39	Состояние релейных выходов	0~65535		
P9-40	Значение на аналоговом выходе AO1	0.00-20.00	В/мА	
P9-43	Частота на импульсном выходе	0.00~100.00	кГц	
P9-45	Значение счетчика А	0~65535	ц	
P9-46	Значение счетчика В	0~65535	1	
P9-47	Задание по шине последовательной связи	-32768~32767		
P9-48	Пользовательская переменная	0~6553.5		
	раметров 19: Простой ПЛК	1 0 0000.0	<u> </u>	
	T	0: Один цикл, затем работа на последней часто-		
P19-00	Режим работы	те 1: Один цикл, затем раоота на последнеи часто- те		0
		2. Циклическая работа		

Пара-	Наименование параметра Настройки параметра		Ед.	Заводское
метр			изм.	значение
D40.04		0: Нет		
P19-01	Запоминание текущего шага	1: Запоминание при останове		0
	C5	2: Запоминание при отключении питания		
P19-02	Сброс количества сбросов простого ПЛК	0: Нет 1: Сброс		0
P19-10	Скорость на шаге 0	-100,00%100,00%	%	0
P19-10	Скорость на шаге 0	-100,00%100,00%	%	0
P19-11	Скорость на шаге 2	-100,00%100,00%	%	0
P19-13	Скорость на шаге 3	-100,00%100,00%	%	0
P19-14	Скорость на шаге 4	-100,00%100,00%	%	0
P19-15	Скорость на шаге 5	-100,00%100,00%	%	0
P19-16	Скорость на шаге 6	-100,00%100,00%	%	0
P19-17	Скорость на шаге 7	-100,00%100,00%	%	0
P19-18	Скорость на шаге 8	-100,00%100,00%	%	0
P19-19	Скорость на шаге 9	-100,00%100,00%	%	0
P19-20	Скорость на шаге 10	-100,00%100,00%	%	0
P19-21	Скорость на шаге 11	-100,00%100,00%	%	0
P19-22	Скорость на шаге 12	-100,00%100,00%	%	0
P19-23	Скорость на шаге 13	-100,00%100,00%	%	0
P19-24	Скорость на шаге 14	-100,00%100,00%	%	0
P19-25	Скорость на шаге 15	-100,00%100,00%	%	0
	Время разгона/замедления на шаге		, -	
P19-26	0	0,06000,0	С	0
P19-27	Время разгона/замедления на шаге 1	0,06000,0	С	0
P19-28	Время разгона/замедления на шаге 2	0,06000,0	С	0
P19-29	Время разгона/замедления на шаге 3	0,06000,0	С	0
P19-30	Время разгона/замедления на шаге 4	0,06000,0	С	0
P19-31	Время разгона/замедления на шаге 5	0,06000,0	С	0
P19-32	Время разгона/замедления на шаге 6	0,06000,0	С	0
P19-33	Время разгона/замедления на шаге 7	0,06000,0	С	0
P19-34	Время разгона/замедления на шаге 8	0,06000,0	С	0
P19-35	Время разгона/замедления на шаге 9	0,06000,0	С	0
P19-36	Время разгона/замедл. на шаге 10	0,06000,0	С	0
P19-37	Время разгона/замедл. на шаге 11	0,06000,0	С	0
P19-38	Время разгона/замедл. на шаге 12	0,06000,0	С	0
P19-39	Время разгона/замедл. на шаге 13	0,06000,0	С	0
P19-40	Время разгона/замедл. на шаге 14	0,06000,0	С	0
P19-41	Время разгона/замедл. на шаге 15	0,06000,0	С	0
P19-42	Время работы на шаге 0	0,06000,0	С	0
P19-43	Время работы на шаге 1	0,06000,0	С	0
P19-44	Время работы на шаге 2	0,06000,0	С	0
P19-45	Время работы на шаге 3	0,06000,0	С	0
P19-46	Время работы на шаге 4	0,06000,0	С	0
P19-47	Время работы на шаге 5	0,06000,0	С	0
P19-48	Время работы на шаге 6	0,06000,0	С	0
P19-49	Время работы на шаге 7	0,06000,0	С	0
P19-50	Время работы на шаге 8	0,06000,0	С	0
P19-51	Время работы на шаге 9	0,06000,0	С	0
P19-52	Время работы на шаге 10	0,06000,0	С	0
P19-53	Время работы на шаге 11	0,06000,0	С	0
P19-54	Время работы на шаге 12	0,06000,0	С	0
P19-55	Время работы на шаге 13	0,06000,0	С	0
P19-56	Время работы на шаге 14	0,06000,0	С	0
P19-57	Время работы на шаге 15	0,06000,0	C	0
P19-80	Средняя скорость	065535	об/	
			МИН	

P19-82 Bp P19-83 Ko P19-84 Bp Fpynna napaw P20-00 Pe P20-01 M	екущий шаг Время на текущем шаге Количество сбросов простого ПЛК Время работы в текущем цикле	015 0,06553,0 065535	С			
P19-83 Ko P19-84 Bp Группа парам P20-00 Pe P20-01 M	Количество сбросов простого ПЛК Время работы в текущем цикле		С			
Р19-84 Вр Группа парам Р20-00 Ре Р20-01 М	Время работы в текущем цикле	065535				
Группа парам P20-00 Ре P20-01 М						
P20-00 P6	MOTROR 20: Hassasina Brumaniania	06553.5	мин			
P20-01 M	руппа параметров 20: насосное применение					
	Режим работы	0: поддержание давления		0		
	Линимальная выходная частота	0,00P20-02	%	40		
P20-02 M	Лаксимальная выходная частота	P20-01100,00	%	100		
P20-03 Be	Верхнее ограничение давления	0.00~150.00	%	100.00		
P20-04 Hi	Нижнее ограничение давления 0.00~80.00		%	0.00		
P20-05 3a	адержка сигнала о низком давле- нии	0.0~60.0	сек	10.0		
Р20-06 И	1сточник обратной связи по расходу	0: HeT 1: Al1 2: Al2		0		
1 270-07 1 .	/ровень индикации потери обрат- ной связи ПИД-регулятора	0.00~5.00 (0.00: функция отключена)	%	0.00		
P20-08 3a	адержка сигнала о потере обратной вязи ПИД-регулятора	0.0~100.0	сек	20.0		
Р20-16	Цействия при потере обратной связи ПИД-регулятора	0: Сигнал аварии и останов 1: Предупреждение и работа на частоте P0-45		0		
P20-17 Ha	Направление вращения в пожарном режиме 0: Вперед 1: Назад			0		
P20-22 P6	ежим заполнения трубы	0: Выключен 1: Включен		0		
P20-23 4a	lастота при заполнении трубы	0.00~100.00	%	60.00		
Р20-24 Д	Ілительность заполнения трубы	0.0~6000.0	сек	10.0		
Р20-25 Да	Г авление заполнения трубы	0.00~100.00	%	30.00		
P20-26 Kd	Оличество заданий ПИД-регулятора	0~4		0		
P20-27 O	Определение сухого хода	0: Выключено 1: Включено		0		
Р20-28 Да	Јавление при сухом ходе	0.00~100.00	%	4.00		
P20-29 4a	Іастота при сухом ходе	0.00~100.00	%	96.00		
	ок при сухом ходе	0.0~100.0	%	40.0		
P20-34 4a	lастота 1 для обратного клапана	0.00~P20-01	%	0.00		
P20-35 4a	lастота 2 для обратного клапана	P20-01~100.00	%	40.00		
Р20-36 Де	lень недели	1~7				
	Время	0.00~23.59				
	Работа по сети	0: Выключена 1: Включена		0		
P20-41 A	\дрес в сети	1: Ведущий 2~5: Ведомые 1-4		2		
P20-42 Pe	режим резервного ведущего	0: Выключен 1: Включен		0		
P20-43 4a	lастота при отсутствии связи	0.00~100.00	%	90.00		
	/становка года	2023~2099	1 -	2023		
	/становка даты	1.01~12.31		1.01		
	/становка времени	0.00~23.59		0.00		
P20-48 P6	Режим включения/выключения по времени	0: Выключен 1: Включен		0		

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
		Bit0: Понедельник Bit1: Вторник		
		Bit2: Среда		
P20-49	Выбор дня недели	Bit3: Четверг		0
	3 3 3 4 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	Bit4: Пятница		
		Bit5: Суббота		
		Bit6: Воскресенье		
P20-50	Время включения	0.00~23.59		0.00
P20-51	Время выключения	0.00~23.59		0.00
P20-52	Режим компенсации потерь	0: Выключен 1: Включен		0
P20-53	Номинальный расход 10.00~100.00		%	80.00
P20-54	Потери при номинальном расходе Р20-55~100.00		%	15.00
P20-55	Статические потери	0.00~P20-54	%	0.00
P20-57	Расход	0.00~100.00	%	
P20-58	Задержка определения порыва трубы	0~1000	сек	0
P20-59	Уровень определения порыва трубы	P20-28~40.00	%	10.00
D20.60	Durious and an analysis	0: Выключен		0
P20-60	Включение спящего режима	1: Включен		0
P20-61	Частота спящего режима	0,00100,00	%	2
P20-62	Давление спящего режима	0,00100,00	%	2
P20-63	Задержка спящего режима	0,00300,00	С	10
P20-64	Минимальная длительность спящего режима	0,001800,00	С	300
P20-65	Давление выхода из спящего режи- ма	0,00100,00	%	10
P20-66	Задержка выхода из спящего режима	0,060,0	С	1
P20-67	Частота вращения вперед при очист- ке трубы	0.00~100.00	%	90.00
P20-68	Частота вращения назад при очистке трубы	0.00~100.00	%	60.00
P20-69	Время работы вперед при очистке трубы	1.0~1000.0	сек	5.0
P20-70	Время работы назад при очистке трубы	1.0~1000.0	сек	5.0
P20-71	Пауза между циклами очистки	1.0~1000.0	сек	1.0
P20-72	Количество циклов очистки	1~100		1
		0: нет		
P20-73	Режим работы каскада насосов	1: С постоянным ведущим		0
		2: С переменным ведущим		
P20-74	Частота добавления насоса	P20-76~100.00	%	100.00
P20-75	Отклонение давления для добавления насоса	0.00~30.00	%	10.00
P20-76	Частота отключения одного насоса	0.00~P20-74	%	40.00
P20-77	Отклонение давления для отключения насоса	-10.00~30.00	%	10.00
P20-78	Задержка добавления или отключе- ния насоса	0~3600	сек	5
P20-79	Время замыкания контактора	0.1~9.9	сек	0.5
P20-80	Время отключения контактора	0.1~9.9	сек	0.5
P20-81	Количество насосов	1~8		1
P20-82	Выбор неиспользуемых насосов	0~255		0
P20-83	Задержка принудительной смены насоса	0.0~240.0	Ч	0.0

Пара- метр	Наименование параметра	Настройки параметра		Заводское значение
		0: Нет		
P20-84	Сброс времени наработки	х: Сброс времени наработки насоса х $(x=1^{8})$.		0
		10: Сброс времени наработки всех насосов.		
P20-87	Время включения задания Т1	0.00~23.59		0.00
P20-88	Время включения задания Т2	0.00~23.59		0.00
P20-89	Время включения задания Т3	0.00~23.59		0.00
P20-90	Время включения задания Т4	0.00~23.59		0.00
D20 01	Оставшееся количество циклов	02400		
P20-91	очистки насоса	0~100		
P20-92	Время наработки насоса 1	0~65535	Ч	
P20-93	Время наработки насоса 2	0~65535	Ч	
P20-94	Время наработки насоса 3	0~65535	Ч	
P20-95	Время наработки насоса 4	0~65535	Ч	
P20-96	Время наработки насоса 5	0~65535	Ч	
P20-97	Время наработки насоса 6	0~65535	Ч	
P20-98	Время наработки насоса 7	0~65535	Ч	
P20-99	Время наработки насоса 8	0~65535	Ч	

Примечание

- а. параметры, отмеченные знаком '*', не могут быть изменены при работающем двигателе.
- b. Знак '*' в графе «Заводское значение» показывает, что это значение зависит от типа и модели ПЧ.

2.4. Подробное описание параметров

2.4.1. Группа параметров 0: Основные режимы управления и команды

Пара-	Наименование	Значение	Ед.	Заводское
метр	параметра		изм.	значение
P0-01	Режим управле- ния	0: Бездатчиковый режим управления скоростью 1: Режим управления скоростью с энкодером 2: Бездатчиковый режим управления моментом 3: Режим управления моментом с энкодером		0

- 0: Бездатчиковый режим управления скоростью включает управление скоростью (без обратной связи по скорости от двигателя) с автоматической компенсацией скольжения для почти постоянной скорости при переменных нагрузках. Компенсации активны, но могут быть отключены.
- 1: Режим управления скоростью с энкодером, подходит для высокоточных приложений управления скоростью. Энкодер устанавливается на стороне двигателя, а PG-плата, соответствующая энкодеру, устанавливается на стороне ПЧ.
- 2: Бездатчиковый режим управления моментом в векторном режиме VC 1 (P0-02 Принцип управления двигателем=1) без обратной связи по скорости от двигателя. Параметры ПИД-регулятора момента находятся в группе P4-4*.
- 3: Режим управления моментом с энкодером в векторном режиме с обратной связью по скорости от двигателя.

Примечание: При изменении режима управления параметры РО-15 и РО-16 сбрасываются к заводским значениям.

Пара-	Наименование	Настройки параметра	Ед.	Заводское
метр	параметра		изм.	значение
*P0-02	Метод управле- ния двигателем	0: V/F 1: Векторное управление 1 2: Векторное управление 2		1

Выбор метода управления двигателем:

- 0: V/F, для простых применений или параллельно соединенных двигателей. При выборе этого режима характеристика кривой V/F может быть задана в параметрах P1-53 / P1-55 / P1-57 / P1-59 / P1-61 для напряжения и P1-54 / P1-56 / P1-58 / P1-60 / VF P1-621 для частоты.
- 1: Векторное управление 1: векторное управление путем разделения тока намагничивания и тока момента, подходящее для большинства общих применений. Правильные настройки параметров двигателя важны для достижения наилучшей производительности. Двигатели с постоянными магнитами поддерживают только данный режим.

2: Векторное управление 2, подходит для применений, требующих более высокий пусковой момент или более высокие ударные характеристики. Режим более чувствителен к правильной настройке параметров двигателя, кроме того, параметры P4-5* и P4-6* должны быть точно настроены.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
		0: Не используются		
P0-03	Макросы	1: Насосное применение		0
		2: Простой ПЛК		

- 0: Не используются
- 1: Насосное применение, см. подробное описание параметров группы 20
- 2: Простой ПЛК, см. подробное описание параметров группы 19

При сбросе настроек к заводским параметрам (07-00=9) данный параметр сохраняет своё значение. При необходимости возврат к заводскому значению необходимо выполнить вручную.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
	Характеристики	0: CT		
*P0-04	' '	1: VT		0
	момента	9: AEO		

Задание характеристик момента для нагрузки.

- 0: Постоянный момент, нагрузка поддерживает высокий момент на двигателе также и на низкой скорости, используется в большинстве промышленных применений.
- 1: Переменный момент, момент нагрузки изменяется в зависимости от изменения скорости, обычно более низкий момент соответствует низкой скорости, метод, как правило, используется в вентиляторных и насосных применениях.
- 9: Автоматическая оптимизация энергопотребления (AEO), энергопотребление автоматически оптимизируется путем оптимизации тока намагничивания, метод обычно используется в вентиляторных и насосных применениях.

Примечание: Установка значений 1 или 9 может привести к потере управления из-за снижения запаса по моменту, а также к колебаниям тока.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
	Направление	0: По часовой стрелке		
*P0-05	вращения двига-	1: Против часовой стрелки		2
	теля	2: Оба направления		

Выбор разрешенного направления вращения двигателя. Может использоваться для предотвращения вращения двигателя в нежелательном направлении.

- 0: По часовой стрелке, вал двигателя вращается по часовой стрелке, эта настройка предотвращает вращение двигателя против часовой стрелки;
- 1: Против часовой стрелки, вал двигателя вращается против часовой стрелки, этот параметр предотвращает работу двигателя по часовой стрелке;
- 2: Оба направления, с этой настройкой двигатель может вращаться в обоих направлениях;

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P0-09	Выбор направления вращения	0: Прямое вращение 1: Обратное врашение		0

Изменение направления вращения. Применяется вместо переключения фаз на выходе ПЧ для изменения направления вращения двигателя.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P0-10	Выбор источника задания скорости	0~5		2

Выбор источника задания скорости.

- 0: Основной источник задания;
- 1: Предустановленные значения с приоритетом.

Например, установите P0-11=1 (Al1 в качестве источника задания), P0-12=13 (предустановленное значение в качестве дополнительного источника задания), P2-07=22, P2-08=23, P2-09=24, P2-10=25. Если Dl1 активен, а Dl2, Dl3 и Dl4 неактивны, используется значение P0-31. Если все Dl1 $^{\sim}$ Dl4 неактивны, заданное значение соответствует значению Al1. Обратите внимание, что задание P0-30 не может иметь приоритет.

- 2: Комбинация основного и дополнительного источника задания.
- 3: Переключение между основным источником и дополнительным источником задания.

Заданный источник можно переключить с помощью функции дискретного входа (один из параметров от P2-05 до P2-10 задан как 41). Когда соответствующий вход неактивен, выбран основной источник задания; вход активен, выбран дополнительный источник задания.

- 4: Переключение между основным источником и комбинацией основного и дополнительного источника задания.
- 5: Переключение между дополнительным источником и комбинацией основного и дополнительного источника задания.

Настройки 4 и 5 работают аналогично настройке 3.

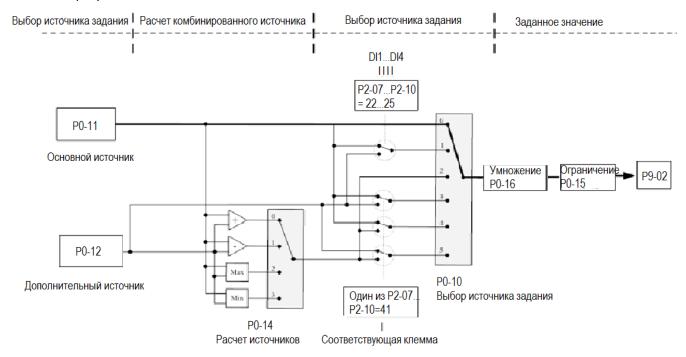
Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P0-11	Источник основного задания	0~30		1
P0-12	Источник дополнительного задания	Аналогично Р0-11		20

Выберите источник для основного набора и дополнительного набора.

- 0: Нет функции;
- 1: Клемма AI1, аналоговый вход AI1 используется в качестве источника задания, см. Р3-00 ~ Р3-08;
- 2: Клемма AI2, аналоговый вход AI2 используется в качестве источника задания, см. P3-09 ~ P3-17;
- 3: Клемма MI1 на опциональном модуле IOO1, аналоговый вход MI1 используется в качестве источника задания, см. P3-18 ~ P3-26;
- 4: Клемма MI2 на опциональном модуле IOO1, аналоговый вход MI2 используется в качестве источника задания, см. P3-27 ~ P3-35;
- 5: Импульсный вход, в качестве источника задания используется импульсный вход, см. Р2-10, Р2-50 ~ Р2-53;
- 10: Предустановленное значение 0 + БОЛЬШЕ/МЕНЬШЕ, используется предварительно установленное значение 0 (РО-
- 30) плюс регулировка сигналами БОЛЬШЕ/МЕНЬШЕ;
- 11: Несколько предустановленных значений, см. P0-30 ~ P0-45 и P2-05 ~ P2-10;
- 20: Задание по последовательной связи;
- 21: ПИД-регулятор: в качестве источника задания используется выход ПИД-регулятора;
- 30: Клавиатура пульта управления, задание осуществляется с пульта управления, см. Р3-68 ~ Р3-69;

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P0-13	Источник задания момента в режиме	Аналогично РО-11		1
10 13	управления моментом	7 11 10 7 10 17 11 11 10 10 11		_

Выбор источника сигнала для управления моментом, базовое значение задания основано на номинальном моменте двигателя (Р1-08).


Пара-	Наименование пара-	Настройки параметра	Ед.	Заводское
метр	метра	настроики параметра		значение
		0: Основное + дополнительное		
РО-14 Расчетное значение задания		1: Основное – дополнительное		0
		2: Максимальное из основного и дополнительного		U
		3: Минимальное из основного и дополнительного		

Этот параметр используется для расчета задания на базе основного и дополнительного источника задания, результаты расчета могут быть использованы для настройки параметра P0-10 [2], [4] и [5].

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P0-15	Диапазон задания скорости	0: 0~P0-16 1:-P0-16~P0-16		0
P0-16	Базовое значение задания скорости	0.0~590.0		50.0

Эти два параметра используются для управления диапазоном заданного значения и используются в качестве базы для расчета.

На основе параметров P0-10, P0-11, P0-12, P0-14, P0-15 и P0-16 заданное значение скорости можно рассчитать, как показано на рисунке ниже:

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P0-17	Источник команд управления	0: Клеммы или последовательная связь 1: Клеммы 2: Последовательная связь		0

Команды пуска, останова, изменения направления вращения, JOG режима могут быть заданы как через клеммы дискретных входов, так и по последовательной связи; этот параметр используется для выбора источника команд управления приводом.

- 0: Клеммы или последовательная связь: для задания используются как клеммы входов, так и шина связи;
- 1: Клеммы для команд используются только клеммы входов;
- 2: Последовательная связь, для команд используется только шина связи.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P0-18	Выбор источника команд управления по последовательной связи	0: Нет 1: Встроенный RS485 2: Шина с платы расширения		1

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P0-29	Разрешение переключения источника команд управления сигналом на дис- кретном входе	0: Запрещено 1: Разрешено		0

^{0:} При подаче сигнала на дискретный вход с функцией 41 источник задания переключается в соответствии с Р0-10; переключение источника сигналов управления не происходит.

^{1:} При подаче сигнала на дискретный вход с функцией 41, кроме переключения источника задания происходит переключение управления на клеммы, и импульсные сигналы пуск/останов становятся доступными. При снятии сигнала

происходит одновременное переключение на удаленное управление командами пуск/останов, т.е. на управление по последовательной связи.

Параметр	Наименование параметра	Настройки параметра	Ед.	Заводское
Параметр			изм.	значение
P0-30~P0-45	Предустановленные значения задания	-100.00~100.00	%	0.00

Различные значения, заданные в P0-30 $^{\sim}$ P0-45, могут быть активированы с помощью разных состояний входов DI1 $^{\sim}$ DI4 (P2-07 $^{\sim}$ P2-10 настроены на [22] $^{\sim}$ [25]).

Соотношение комбинации сигналов на входах DI и предустановленных значений:

Выбор предустанов- ленного задания, бит	Предустановленное задание			
4	3	2	1	
ВЫКЛ	выкл	выкл	выкл	P0-30
ВЫКЛ	ВЫКЛ	ВЫКЛ	ВКЛ	P0-31
выкл	ВЫКЛ	ВКЛ	ВЫКЛ	P0-32
ВЫКЛ	ВЫКЛ	ВКЛ	ВКЛ	P0-33
ВЫКЛ	ВКЛ	ВЫКЛ	ВЫКЛ	P0-34
ВЫКЛ	ВКЛ	ВЫКЛ	ВКЛ	P0-35
ВЫКЛ	ВКЛ	ВКЛ	ВЫКЛ	P0-36
ВЫКЛ	ВКЛ	ВКЛ	ВКЛ	P0-37
ВКЛ	ВЫКЛ	ВЫКЛ	ВЫКЛ	P0-38
ВКЛ	ВЫКЛ	выкл	ВКЛ	P0-39
ВКЛ	ВЫКЛ	ВКЛ	ВЫКЛ	P0-40
ВКЛ	ВЫКЛ	ВКЛ	ВКЛ	P0-41
ВКЛ	ВКЛ	ВЫКЛ	ВЫКЛ	P0-42
ВКЛ	ВКЛ	выкл	ВКЛ	P0-43
ВКЛ	ВКЛ	ВКЛ	ВЫКЛ	P0-44
ВКЛ	ВКЛ	ВКЛ	ВКЛ	P0-45

В режиме управления скоростью 100% предустановленного значения соответствует Р0-16. В режиме управления моментом 100% соответствует номинальному моменту двигателя Р1-08.

Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр	Паименование параметра		изм.	значение
P0-46	Значение шага БОЛЬШЕ/МЕНЬШЕ	0.01~100.00	%	0.10

Установка шага изменения задания при каждой активации дискретного входа (DI). За 100% принимается значение РО-16. Для соответствующей клеммы должна быть установлена функция шага БОЛЬШЕ/МЕНЬШЕ (один из параметров от Р2-05 до Р2-10 установлен на значения [30] [31]). Функция шага значения БОЛЬШЕ/МЕНЬШЕ используется, когда параметр Р0-11 или Р0-12 установлен на значение [10].

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
	Сохранение значения, накоп-	0: Не сохранять		
P0-47	ленного сигналами БОЛЬ-	1: Сохранять при останове		0
	ШЕ/МЕНЬШЕ	2: Сохранять при отключении питания		

Этот параметр используется для задания того, сохранять ли установленное значение, измененное функцией БОЛЬ-ШЕ/МЕНЬШЕ, если ПЧ останавливается, или после его выключения.

Пара-	Наименование папаметна	Настройки параметра	Ед.	Заводское
метр	Наименование параметра		изм.	значение
P0-48	Скорость толчкового режима	0.0~400.0 Гц	Гц	0.0

Скорость толчкового режима – это фиксированная выходная скорость, на которой работает ПЧ, когда функция толчкового режима активируется сигналом на клемме дискретного входа DI. Скорость толчкового режима имеет наивысший приоритет, когда активируются различные команды.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P0-49	Разрешение времени разгона/замедления	0: 0.1 сек 1: 0.01 сек	сек	1

Существует два значения разрешения времени разгона/замедления для различных применений.

После изменения этого параметра время разгона/замедления, определенное в параметрах P0-51 ~ P0-66, будет сброшено до заводских настроек по умолчанию.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P0-50	Тип разгона/замедления 1	0: Линейный 1: S-образный		0
P0-51	Время разгона 1	0.01~655.35/0.1~6553.5	сек	*
P0-52	Время замедления 1	0.01~655.35/0.1~6553.5	сек	*
P0-53	Тип разгона/замедления 2	0: Линейный 1: S-образный		0
P0-54	Время разгона 2	0.01~655.35/0.1~6553.5	сек	*
P0-55	Время замедления 2	0.01~655.35/0.1~6553.5	сек	*
P0-56	Тип разгона/замедления 3	0: Линейный 1: S-образный		0
P0-57	Время разгона 3	0.01~655.35/0.1~6553.5	сек	*
P0-58	Время замедления 3	0.01~655.35/0.1~6553.5	сек	*
P0-59	Тип разгона/замедления 4	0: Линейный 1: S-образный		0
P0-60	Время разгона 4	0.01~655.35/0.1~6553.5	сек	*
P0-61	Время замедления 4	0.01~655.35/0.1~6553.5	сек	*
P0-62	Время разгона/замедления толчкового режима	0.01~655.35/0.1~6553.5	сек	*
P0-63	Время S-образного разгона в начале	0.01~655.35/0.1~6553.5	сек	*
P0-64	Время S-образного разгона в конце	0.01~655.35/0.1~6553.5	сек	*
P0-65	Время S-образного замедления в начале	0.01~655.35/0.1~6553.5	сек	*
P0-66	Время S-образного замедления в конце	0.01~655.35/0.1~6553.5	сек	*

Время разгона: Общее время разгона от 0 Гц до номинальной частоты двигателя (Р1-05)

Время замедления: Общее время замедления от номинальной частоты двигателя (Р1-05) до 0 Гц.

Тип разгона/замедления:

- 0: Линейный, скорость двигателя увеличивается/уменьшается с постоянным темпом;
- 2: S-образный, скорость двигателя увеличивается/уменьшается с изменением темпа, чтобы получить плавное изменение скорости. Обычно темп разгона/замедления постоянен.

Время и типы разгона/замедления показаны ниже:

Для S-образной характеристики значение P0-63 + P0-64 не должно превышать общее время разгона, определенное в параметрах P0-51/P0-54/ P0-57/ P0-60, значение P0-65 + P0-66 не должно превышать общее время замедления, определенное в параметрах P0-52/P0-55/ P0-58/P0-61.

Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр			изм.	значение
P0-80	Локальный адрес ПЧ	1~127		1

Задание адреса для шины последовательной связи.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
PO-81	Скорость обмена данными	0: 2400 1: 4800 2: 9600 3: 19200 4: 38400 5~9: Зарезервированы	бит/с	2

Задание скорости обмена данными при последовательной связи.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P0-82	Формат данных последовательной связи (бит четности / стоп-бит)	0: Четный (1 стоп-бит) 1: Нечетный (1 стоп-бит) 2: Нет четности (1 стоп-бит) 3: Нет четности (2 стоп-бита)		0

Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр	Паименование параметра		изм.	значение
P0-83	Мин. задержка отклика при связи	0.000~0.500	сек	0.002

Задание минимального времени задержки между получением запроса и передачей ответа. Параметр используется для предотвращения задержек обработки последовательной связи.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P0-84	Макс. задержка отклика при связи	0.010~10.000	сек	5.000

Задание максимального времени задержки между получением запроса и передачей ответа. Если время задержки превышает это значение, ПЧ не будет передавать ответ на полученные данные.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
DO 05	Confirmation	0: Нормальный отклик		0
P0-85	Сообщение отклика	1: Некорректная команда 2: Без отклика		U

Этот параметр используется для управления откликом сообщения Modbus.

Внимание: ПЧ ответит на команду READ и не ответит на сообщение RADIO независимо от настройки параметра P0-85.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P0-86	Сохранение параметра, заданного по после-	0: Параметр не сохраняется		0
. 0 00	довательной связи, при отключении питания	1: Параметр сохраняется		ŭ

Этот параметр используется для управления сохранением значений параметров, записанных командой WRITE, при отключении питания.

Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр			изм.	значение
P0-87	Терминальный резистор	0: Отключен 1: Подключен		0

Этот параметр включает встроенный терминальный резистор для шины RS485.

Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр			изм.	значение
P0-88	Тайм-аут при последовательной связи	0.01~650.00	сек	1.00

Если время между двумя успешными приемами сообщений превышает заданное значение, это значит, что связь остановлена или прервана, тогда будет активирована функция, заданная в параметре РО-89 (Функция паузы связи). Если для этого параметра установлено значение 0, функция паузы, определенная в РО-89, отключена.

Примечание. Счетчик паузы активируется ТОЛЬКО при действующей последовательной связи, поэтому, если ПЧ не получал до того успешно принятых сообщений, пауза определяться не будет.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P0-89	Действие при превышении тайм-аута в процессе последовательной связи	0: Нет 2: Останов двигателя 3: Толчковый режим и предупреждение 4: Работа на максимальной частоте Р5-03 5: Сигнал аварии и останов выбегом 6: Предупреждение		0

Задание действия при превышении паузы, заданной в параметре РО-88.

- 0: Нет действия, нет ответа, управление по последнему полученному слову управления.
- 2: Плавный останов двигателя и предупреждение "u.62";
- 3: Режим Јод и предупреждение "u.62";
- 4: Разгон и работа на максимальной частоте Р5-03 и предупреждение "u.62";
- 5: Сигнал ошибки «А.62» и останов выбегом;
- 6: Предупреждение «u.62» и управление по последнему полученному слову управления.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P0-90	Сброс паузы последовательной	0: Нет		0
PU-90	СВЯЗИ	1: Сброс паузы		U

Флаг паузы связи может быть сброшен только этим параметром. Если флаг не сброшен, даже после восстановления связи и сброса аварийного сигнала, ПЧ продолжит сообщать о паузе связи.

2.4.2. Группа параметров 1: Основные параметры управления ПЧ и двигателем

Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр	Наименование параметра	Пастройки параметра	изм.	значение
P1-00	Частота ШИМ	2~16	кГц	*

Настройка частоты коммутации. Влияние частоты коммутации на преобразователь и двигатель показано в таблице:

Частота коммутации	ниже → выше
Шум двигателя	ГРОМЧЕ → ТИШЕ
Рост температуры преобразователя	ниже → выше
Ток утечки на выходе	МЕНЬШЕ → БОЛЬШЕ
Гармоники в выходном токе	БОЛЬШЕ → МЕНЬШЕ
Влияние радиопомех	МЕНЬШЕ → БОЛЬШЕ

Общие соображения по установке несущей частоты:

- 1. Уменьшите частоту коммутации при длинном кабеле двигателя
- 2. Уменьшите частоту коммутации при высоком уровне радиопомех
- 3. Уменьшите частоту коммутации при большом токе утечки на высоких частотах
- 4. Уменьшите частоту коммутации при повышенной температуре двигателя
- 5. Увеличьте частоту коммутации, если двигатель сильно шумит

Примечания:

- Диапазон установки частоты коммутации для моделей: 0.37~22кВт: 2~16кГц, 30~90кВт: 2~8 кГц, 110~160кВт: 2~4кГц, ≥185 кВт: 2~3кГц.
- 2. При большой частоте коммутации преобразователь греется сильнее. В этом случае уменьшите нагрузку на двигатель, в противном случае возможен аварийный останов по перегреву и даже выход преобразователя из строя.

Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр	палменование наражегра	пастроини параметра	изм.	значение
		2: 200-240В/50Гц		
	Параметры сети	12: 380-440В/50Гц		
*D1 O1		22: 440-480В/50Гц		*
*P1-01		102: 220-240В/60Гц		
		112: 380-440В/60Гц		
		122: 440-480В/60Гц		

Выбор напряжения питающей сети.

Пара-	Наименование	Настройки параметра	Ед.	Заводское
метр	параметра	пастройки параметра		значение
		0: Асинхронный		
		1: Синхронный с поверхностными магнитами (SPM)		
*D1_02	Р1-02 Тип двигателя	2: Синхронный с заглубленными магнитами (IPM) без		0
11-02		насыщения		O
		3: Синхронный с заглубленными магнитами (IPM) с насы-		
		щением		

Таблица активности параметров, знак "√" показывает, что параметр активен:

Параметр	[0] Асин- хронный двигатель	[1] ~ [3] Синхронный двигатель с постоянными магнитами
РО-04 Характеристики момента	٧	
Р1-18 Индуктивность Ld, оси D (двигатели с ПМ)		٧
Р1-19 Индуктивность Lq, оси Q (двигатели с ПМ)		٧
Р1-20 Насыщенная индуктивность Ld-s, оси D (двигатели с ПМ)		٧
Р1-21 Насыщенная индуктивность Lq-s, оси Q (двигатели с ПМ)		٧
Р1-22 Ток насыщения оси D для Ld-s		٧
Р1-23 Ток насыщения оси Q для Lq-s		٧
Р1-24 Число полюсов двигателя		٧
P1-25 ПротивоЭДС на номинальной скорости для двигателей с ПМ		٧
Р1-27 Инерция системы		٧
Р1-32 Коэффициент компенсации нагрузки на низкой скорости	٧	
Р1-33 Коэффициент компенсации нагрузки на высокой скорости	٧	
Р1-34 Ток намагничивания двигателя на нулевой скорости (Р1-32)	٧	
Р1-35 Минимальная частота для нормального тока намагничивания двигателя	٧	
Р1-36 Минимальный ток двигателя на низкой скорости		٧
Р1-37 Компенсация скольжения	٧	
Р1-38 Постоянная времени компенсации скольжения	٧	
Р1-39 Коэффициент демпфирования резонанса	٧	
Р1-40 Постоянная времени фильтра демпфирования резонанса	٧	
Р1-41 Коэффициент демпфирования для двигателей с постоянными магнитами		٧
Р1-42 Постоянная времени демпфирования для низкой скорости (двигатели с ПМ)		٧
Р1-43 Постоянная времени демпфирования для высокой скорости (двигатели с ПМ)		٧
Р1-44 Постоянная времени токового фильтра (двигатели с ПМ)		٧
Р1-53~Р1-62 Формирование кривой V/F по точкам	٧	
Р1-63 Метод пуска двигателей с ПМ		٧
Р1-64 Метод пуска асинхронных двигателей	٧	
Р1-86 Ток возврата в начальную позицию (пуск двигателей с ПМ)		٧
Р1-87 Время возврата в начальную позицию (пуск двигателей с ПМ)		٧

Примечание: выше приведены только основные сведения о параметрах. Для подробной информации см. описание для каждого параметра.

Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр	паименование параметра	пастроини параметра	изм.	значение
*P1-03	Номинальная мощность двигателя	0.12~450	кВт	*
*P1-04	Номинальное напряжение двигателя	50~1000	В	*
*P1-05	Номинальная частота двигателя	20~400	Гц	*
*P1-06	Номинальный ток двигателя	0.1~1200	Α	*
*P1-07	HOMBUS BLUSG CHOPOCTI, BRUFSTORG	100~24000	Об/	*
F 1-07	Номинальная скорость двигателя	100 24000	мин	
*P1-08	Номинальный момент двигателя	0.1~6553.5	Н∙м	*

Установите параметры в соответствии с шильдиком двигателя, независимо от того, какой режим управления выбран. Изменение значений P1-03 и P1-04 автоматически сбросит параметры P1-14 ~ P1-23 на заводские настройки.

Примечание 1: если мощность двигателя сильно отличается от мощности преобразователя, то возможно ухудшение качества регулирования и защиты двигателя.

Примечание 2: при изменении параметра Р1-03 по последовательной связи необходимо вводить не значение мощности, а ее код. Коды мощностей перечислены в таблице ниже:

1: 0,09 кВт	7: 0,75 кВт	13: 4 кВт	19: 22 кВт	25: 90 кВт	31: 220 кВт	37: 450 кВт
2: 0,12 кВт	8: 1,1 кВт	14: 5,5 кВт	20: 30 кВт	26: 110 кВт	32: 250 кВт	
3: 0,18 кВт	9: 1,5 кВт	15: 7,5 кВт	21: 37 кВт	27: 132 кВт	33: 280 кВт	
4: 0,25 кВт	10: 2,2 кВт	16: 11 кВт	22: 45 кВт	28: 160 кВт	34: 315 кВт	
5: 0,37 кВт	11: 3 кВт	17: 15 кВт	23: 55 кВт	29: 185 кВт	35: 355 кВт	
6: 0,55 кВт	12: 3,7 кВт	18: 18,5 кВт	24: 75 кВт	30: 200 кВт	36: 400 кВт	

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
*P1-13	Автонастройка двигателя	0: Нет 1: Быстрая статическая автонастройка 2: Полная статическая автонастройка		0

Используйте автонастройку двигателя для получения точных параметров двигателя и дальнейшей оптимизации характеристик управления.

Быстрая статическая настройка работает только для определения параметров статора.

При полной статической настройке определяются параметры ротора и статора.

Перед запуском функции автонастройки параметров двигателя нижеуказанные параметры двигателя должны быть правильно установлены на основании информации на шильдике двигателя: P1-02 Тип двигателя, P1-03 Номинальная мощность двигателя, P1-04 Номинальное напряжение двигателя, P1-05 Номинальная частота двигателя, P1-06 Номинальный ток двигателя, P1-07 Номинальная скорость двигателя, P1-08 Номинальный момент двигателя, P1-24 Число полюсов, P1-25 Противо-ЭДС на номинальной скорости (для двигателей с ПМ). Автонастройка возможна только для двигателей мощностью от двух ступеней ниже мощности ПЧ до одной ступени выше мощности ПЧ.

Параметры, полученные в различных состояниях автонастройки, перечислены ниже:

Асинхронные двигатели	Двигатели с ПМ
Р1-14 Сопротивление статора (Rs)	Р1-14 Сопротивление статора (Rs)
Р1-15 Сопротивление ротора Р1-16 Реактивное сопротивление утечки статора (X1)	Р1-18 Индуктивность Ld, оси D Р1-19 Индуктивность Lq, оси Q Р1-20 Насыщенная индуктивность Ld-s, оси D Р1-21 Насыщенная индуктивность Lq-s, оси Q
Р1-17 Общее реактивное сопротивление (Xh)	P1-22 Ток насыщения оси D для Ld-s P1-23 Ток насыщения оси Q для Lq-s

Остановить процесс автонастройки можно, подав команду на дискретный вход с функцией 2: Останов выбегом, или установив регистр 9999=6 (выбег) по последовательной связи.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
*P1-14	Сопротивление статора (Rs)	0.001~65.535	Ω	*
*P1-15	Сопротивление ротора (Rr)	0.001~65.535	Ω	*
*P1-16	Реактивное сопротивление утечки на статоре (X1)	0.001~65.535	Ω	*
*P1-17	Общее реактивное сопротивление (Xh)	0.01~655.35	Ω	*
*P1-18	Индуктивность Ld, оси D (двиг. с ПМ)	0.01~655.35	мГн	*
*P1-19	Индуктивность Lq, оси Q (двиг. с ПМ)	0.01~655.35	мГн	*
*P1-20	Насыщенная индуктивность Ld-s, оси D (двиг. с ПМ)	0.01~655.35	мГн	*
*P1-21	Насыщенная индуктивность Lq-s, оси Q (двиг. с ПМ)	0.01~655.35	мГн	*
*P1-22	Ток насыщения оси D для Ld-s	20~200	%	100
*P1-23	Ток насыщения оси Q для Lq-s	20~200	%	100

Обычно эти параметры на шильдике двигателя не отображаются, необходимо запустить функцию автонастройки параметров двигателя или запросить их у поставщика двигателя. Если этого не сделать, то для управления будут использоваться заводские настройки по умолчанию, которые могут не дать оптимальную производительность.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
*P1-24	Число полюсов двигателя	2~200		4

Пара-	Наименование параметра	Настройки	Ед.	Заводское
метр	ттаятте паратегра	параметра	изм.	значение
*P1-25	Противо-ЭДС на номинальной скорости для двигателей с ПМ	0~9000	В	*

Противо-ЭДС – это напряжение, создаваемое электродвигателем с постоянными магнитами, когда источник питания подключен, а вал вращается с помощью механической силы или по инерции. Противо-ЭДС обычно указывается как напряжение между двумя фазами при определенной скорости двигателя, когда питание не подключено. Если противо-ЭДС не указана на шильдике двигателя, обратитесь к производителю двигателя.

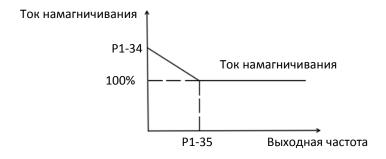
Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр	паименование параметра		изм.	значение
*P1-26	Длина моторного кабеля	0~150	M	10

Задание длины моторного кабеля. Задание правильной длины кабеля может предотвратить помехи, возникающие в двигателе.

	Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
	метр	Talline To Salline Tapanie . pa	and the second second	изм.	значение
Ī	*P1-27	Инерция системы	0.00~655.35	KΓ·M ²	*

Значение этого параметра обычно получается с помощью функции автонастройки.

Пара-	Наименование параметра	Настройки па-	Ед.	Заводское
метр	Паименование параметра	раметра	изм.	значение
P1-32	Коэффициент компенсации нагрузки на низкой скорости	0~199	%	100
P1-33			%	100


Задание процентного значения компенсации напряжения относительно нагрузки, когда двигатель работает на низкой скорости (Р1-32) / высокой скорости (Р1-33) для получения оптимальной характеристики нагрузки.

Точка переключения низкой и высокой скорости автоматически рассчитывается в зависимости от размера двигателя. Обычно это значение равно 5 Гц.

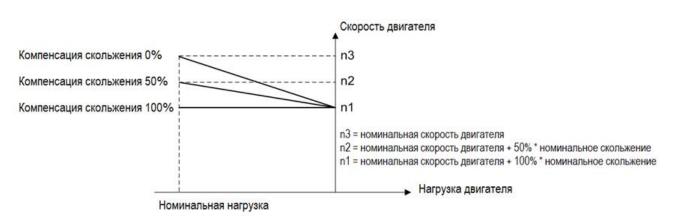
Пара- метр	Наименование параметра	Настройки па- раметра	Ед. изм.	Заводское значение
P1-34	Ток намагничивания двигателя на нулевой скорости	0~300	%	100
P1-35	Минимальная частота для нормального тока намагничивания двигателя	0.0~10.0	Гц	0.0

Используйте ток намагничивания двигателя в параметре P1-34 на низкой скорости вместе с P1-35. Установите частоту перехода на нормальный ток намагничивания, чтобы получить различную тепловую нагрузку и характеристики вала двигателя при работе на низкой скорости (ниже P1-35). При низких значениях этого параметра момент на валу двигателя может быть недостаточен.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P1-36	Минимальный ток двигателя на низкой скорости	0~120	%	80

Задайте минимальный ток двигателя на низкой скорости для обеспечения запуска двигателя с нагрузкой. Этот параметр работает только для двигателей с постоянными магнитами.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P1-37	Компенсация скольжения	-400~399	%	*


При работе скорость двигателя падает с увеличением нагрузки. Когда двигатель работает в режиме генерации, с увеличением нагрузки скорость двигателя будет увеличиваться. Соответствующая компенсация скольжения может поддерживать постоянную скорость двигателя при изменении нагрузки.

Если этот параметр установлен на 100%, то компенсация при номинальной нагрузке соответствует скольжению двигателя.

Схема компенсации скольжения приведена ниже:

Компенсация скольжения в режиме вращения двигателя

Компенсация скольжения в генераторном режиме

При наличии более одного двигателя на одном валу существует необходимость в распределении нагрузки между двигателями. Этого можно достичь, запустив двигатели в разомкнутом контуре скорости и установив для одного отрицательную компенсацию скольжения (контроль неравномерности).

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P1-38	Постоянная времени компенсации скольжения	0.05~5.00	сек	*

Этот параметр предназначен для управления скоростью отклика компенсации скольжения; чем выше значение, тем медленнее реакция. Если возникает низкочастотный резонанс, задайте высокое значение данного параметра.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P1-39	Коэффициент демпфирования резонанса	0~5000	%	*
P1-40	Постоянная времени фильтра демпфирования резонанса	0.005~0.050	сек	0.005

При колебаниях нагрузки в двигателе (особенно при мощности ≥ 30 кВт) может возникать резонанс скорости и тока, что может привести к отказу системы из-за перегрузки по току. Резонанс чаще появляется при работе без нагрузки или при небольшой нагрузке. Не изменяйте эти параметры, если двигатель не имеет резонанса. Увеличивайте значение Р1-39 только тогда, когда двигатель имеет явный резонанс. Чем больше заданное значение, тем лучше будет результат подавления резонанса. Но слишком высокое значение Р1-39 снизит быстродействие. Р1-40 должен быть установлен так, чтобы обеспечить функцию демпфирования; малое значение ускоряет отклик функции демпфирования, но оба малых значения вышеуказанных параметров могут привести к нестабильной работе.

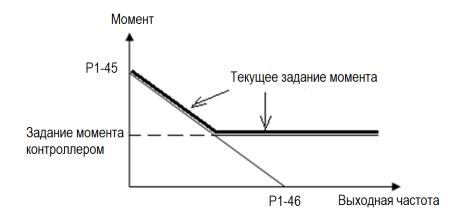
Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр	паименование нараметра	пастроики параметра	изм.	значение
P1-41	Коэффициент демпфирования для двигателей с по-	0~5000	%	120
F1-41	стоянными магнитами	0 3000	70	120

Значение P1-41 определяет динамические характеристики двигателя с постоянными магнитами. Более высокое значение дает более высокие динамические характеристики. Чем ниже значение, тем ниже динамические характеристики, но лучше контролируется механический резонанс. Если значение коэффициента демпфирования слишком высокое или низкое, управление становится нестабильным.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P1-42	Постоянная времени демпфирования для низкой скорости (двигатели с ПМ)	0.01~20.00	сек	8.0

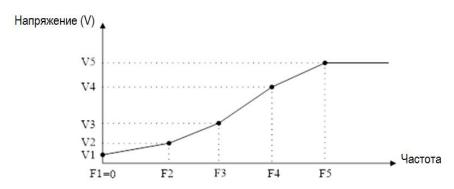
Эта постоянная времени используется при скорости двигателя ниже 10% от номинальной скорости. Малое значение постоянной времени демпфирования позволяет ускорить управление. Однако, если это значение слишком мало, управление может стать нестабильным.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P1-43	Постоянная времени демпфирования для высокой скорости (двигатели с ПМ)	0.01~20.00	сек	0.8

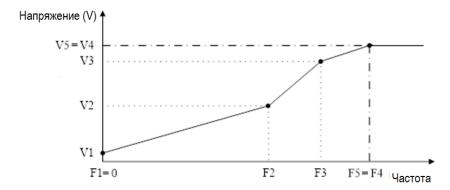

Эта постоянная времени используется при скорости двигателя выше 10% от номинальной скорости. Малое значение постоянной времени демпфирования позволяет ускорить управление. Однако, если это значение слишком мало, управление может стать нестабильным.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P1-44	Постоянная времени токового фильтра (двигатели с ПМ)	0.001~1.000	сек	0.5

Чтобы уменьшить влияние высокочастотных пульсаций и резонанса системы при расчете управляющего напряжения, необходим токовый фильтр, без которого пульсации тока могут искажать рассчитанное напряжение и влиять на стабильность системы.


Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P1-45	Минимальный момент в режиме управления моментом	-100~100	%	5
P1-46	Минимальная скорость отсечки момента при запуске режима управления моментом	0.1~50.0	Гц	3.0

В режиме управления моментом, если задание момента слишком мало, двигатель может не запуститься из-за наличия статического трения, поэтому для запуска нагрузки необходим минимальный момент, установленный на низкой скорости. На рисунке ниже показано, как эти параметры определяют момент.



Параметр	Наименование параметра	Настройки	Ед.	Заводское
Параметр	паліменование нараметра	параметра	изм.	значение
P1-53/P1-55/P1-57/P1-59/P1-61	Напряжение точек V/F кривой	0.0~999.9	В	*
P1-54/P1-56/P1-58/P1-60/P1-62	Частота точек V/F кривой	0.0~590.0	Гц	*

 $P1-53 \sim P1-62$ используются для построения кривой V/F для достижения наилучших характеристик нагрузки. Методика построения показана ниже:

P1-53 / P1-55 / P1-57 / P1-59 / P1-61 соответствуют V1 \sim V5, а P1-54 / P1-56 / P1-58 / P1-60 / P1-62 соответствуют F1 \sim F5. Приведенные ниже правила должны соблюдаться для набора: F1 = 0 и F1≤F2≤F3≤F4≤F5. При необходимости вы можете объединить две или более точек в одну, чтобы упростить V/F кривую, например, как показано ниже:

V/F кривые по умолчанию устанавливаются следующим образом:

ПЧ 220В

1112205						
Напражение	P1-53	P1-55	P1-57	P1-59	P1-61	
Напряжение	0.0	7.0	220.0	220.0	220.0	
Частота	P1-54	P1-56	P1-58	P1-60	P1-62	
Hacioia	0.0	0.5	50.0	50.0	50.0	

ПЧ 380В

Напражение	P1-53	P1-55	P1-57	P1-59	P1-61
Напряжение	0.0	12.0	380.0	380.0	380.0
Изстота	P1-54	P1-56	P1-58	P1-60	P1-62
Частота	0.0	0.5	50.0	50.0	50.0

Примечание. V/F кривые работают только в режиме управления V/F (P0.02 = 0). Слишком большое значение напряжения на низкой частоте может вызвать срабатывание защиты от перегрузки по току и повредить двигатель из-за большого тока и высокой температуры.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P1-63	Метод пуска двигателей с ПМ	0: Определение начальной позиции (IPD) 1: Возврат в начальную позицию		1

Поскольку ПЧ не фиксирует фактического положения ротора при пуске, требуется процесс возврата в начальную позицию или определения начального положения (IPD). Определение начального положения протекает быстро, и это время обычно можно игнорировать. Время возврата в начальную позицию задается параметром P1-87.

Примечание. Для двигателя с постоянными магнитами при пуске ПЧ будет пытаться отслеживать скорость вращения и угол поворота двигателя. Если отслеживание происходит успешно, пуск произойдет непосредственно в зависимости от значений скорости и угла поворота двигателя.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
*P1-64	Метод пуска асинхронных двига- телей	0: Прямой пуск 1: Подхват вращающегося двигателя		0

Если асинхронный двигатель вращается, то его невозможно запустить с частоты 0 Гц, поскольку ток будет слишком большим и может повредить ПЧ. При включенной функции подхвата (P1-64 = 1), ПЧ будет сначала определять скорость двигателя, а после определения продолжать вращение с этой скорости. Если скорость не будет определена, то преобразователь будет считать, что двигатель остановлен, и начнет запуск с 0 Гц.

Когда включен подхват, параметры Р1-70 (время задержки пуска) и Р1-71 (работа во время задержки) игнорируются.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P1-67	Минимальная допустимая частота	0.00~50.00	Гц	0.1

ПЧ запускается только при абсолютном значении заданной частоты не меньше, чем значение параметра Р1-67. Если задано абсолютное значение частоты меньше настройки Р1-67, ПЧ воспримет это задание, как команду останова.

Примечание: Если задана частота выше P1-67, разгон будет плавным, начиная с 0, например, если установлено задание 20 Гц и P1-67 = 5,0, разгон начнется с 0 Гц, пройдет через 1 Гц, 2 Гц ... 5 Гц и до 20 Гц.

Параметр эффективен только в режиме управления скоростью, и при отключенных макросах.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P1-68	Диапазон пропуска низких частот для асинхронных двигателей	0.0~20.0	Гц	0.0

Если абсолютное значение заданной скорости меньше, чем задание параметра Р1-68, ПЧ будет работать с частотой, заданной в Р1-68. Если абсолютное значение заданной скорости больше, чем задание параметра Р1-68, ПЧ будет стартовать непосредственно со значения Р1-68, а затем будет разгоняться до заданной скорости. Обратите внимание, что параметр Р1-68 определяет только абсолютное значение команды задания скорости, он не меняет направление вращения двигателя. Например:

Задайте Р1-68 = 3. Если задано значение скорости 2, ПЧ будет работать на частоте 3 Гц; если заданная скорость равна -2, ПЧ будет работать в обратном направлении на частоте 3 Гц. Если заданная скорость равна 20, ПЧ сразу будет работать на частоте 3 Гц, а затем разгонится с 3 Гц до 20 Гц, используя время разгона. Если заданная скорость изменяется с 20 Гц до -20 Гц, ПЧ сначала замедлится до 3 Гц, а затем сразу же будет работать в обратном направлении с частотой 3 Гц и разгонится в обратном направлении до 20 Гц. Если заданная частота равна 0, ПЧ сначала замедлится до 3 Гц и затем остановится.

Примечания:

- 1. Не рекомендуется использовать параметры Р1-67 и Р1-68 вместе.
- 2. Если активированы и Р1-68, и Р1-84 (значение выше 0), торможение постоянным током будет активно только тогда, когда Р1-84> Р1-68.

Пара-	Наименование папаметра	Наименование параметра Настройки параметра	Ед.	Заводское
метр	Паименование параметра		изм.	значение
P1-70	Время задержки пуска	0.0~10.0	сек	0.0
P1-71	Dakara na pnama na panyuu	0: Двигатель на выбеге		0
P1-/1	Работа во время задержки	1: Удержание постоянным током		U

P1-70 задает время задержки от получения команды пуска до запуска двигателя. ПЧ начинает работу в соответствии с P1-71, в течение времени задержки P1-70, а затем запускает двигатель. Установка времени задержки на 0.0 отключает функцию задержки, устанавливаемую в параметре P1-71. Варианты значений параметра P1-71 описаны ниже:

- 0: На двигатель не поступает напряжение;
- 1: Удержание постоянным током (Р1-72) в течение времени задержки пуска;

Примечания:

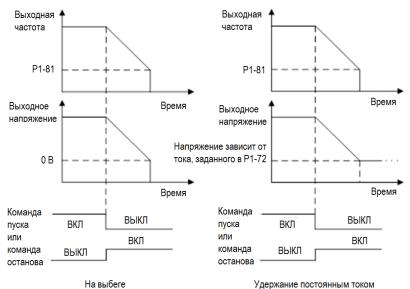
- 1. Время задержки Р1-70 не будет включено во время разгона.
- 2. Если включен подхват вращающегося двигателя (Р1-64 = 1), функция задержки Р1-71 будет отключена.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P1-72	Постоянный ток удержания	0~150	%	50

Введите значение для тока удержания в процентах от номинального тока двигателя, установленного в P1-06. Этот параметр может применяться для удержания двигателя (удерживающий момент) или предварительного нагрева двигателя. Этот параметр активен, если функция удержания постоянным током была задана в параметрах P1-71 или P1-80. Разница в том, что для функции задержки P1-71 в качестве пуска ток удержания будет подаваться только в течение времени задержки P1-70, а для функции удержания P1-80 ток удержания будет подаваться до подачи команды пуска.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P1-79	Метод останова в режиме управления моментом	0: Останов в режиме управления моментом 1: Останов в режиме управления скоростью		0

Этот параметр используется для установки режима останова в режиме управления моментом:


- 0: Режим управления моментом. Когда команда останова активирована, заданный момент уменьшается до нуля в соответствии с временем замедления.
- 1: Режим управления скоростью. Когда команда останова активирована, заданная скорость уменьшается до нуля в соответствии с временем замедления.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P1-80	Способ останова после завершения замедления	0: На выбеге 1: Удержание постоянным током		0
P1-81	Частота включения торможения по- стоянным током	0.0~400.0	Гц	0.0

Р1-80 Действие после снижения скорости до Р1-81 при останове.

0: На выбеге;

1: Удержание постоянным током: на двигатель подается постоянный ток, заданный в параметре Р1-72; Диаграмма методов останова показана ниже:



Примечание 1: если P1-81> P1-84, работает функция P1-80, а функция торможения постоянным током работать не будет; если P1-81 < P1-84, функция торможения постоянным током будет работать, а функция P1-80 работать не будет. Примечание 2: для организации останова выбегом с любой частоты установить P1-80=0 и P1-81= максимальная используемая частота.

Пара- метр	Наименование параметра	Настройки па- раметра	Ед. изм.	Заводское значение
P1-82	Постоянный ток торможения (асинхронные двигатели)	0~150	%	50
P1-83	Время торможения постоянным током (асинхронные двигатели)	0.0~60.0	сек	2
P1-84	Частота включения торможения постоянным током (асинхронные двигатели)	0.0~400.0	Гц	0.0
P1-85	Время размагничивания перед торможением постоянным током	0~100	%	0

Торможение постоянным током — подача постоянного тока на двигатель для торможения и удержания двигателя, когда скорость вращения двигателя по команде останова снижается до P1-84. P1-82 определяет постоянный ток торможения в процентах от номинального тока двигателя P1-06. P1-83 определяет, как долго должен подаваться постоянный ток. P1-84 определяет, начиная с какой частоты подавать постоянный ток торможения. Между обычным замедлением и торможением постоянным током необходим период размагничивания, чтобы избежать возможных скачков тока. P1-85 определяет длительность этого периода. Более высокое значение P1-85 соответствует большему времени для размагничивания.

Диаграмма процесса торможения постоянным током показана ниже:

Примечание: Р1-85 также работает для Р1-80.

Пара-	Наименование параметра	Настройки	Ед.	Заводское
метр		параметра	изм.	значение
P1-86	Ток возврата в начальную позицию (пуск двигателей с ПМ)	0~150	%	80
P1-87	Время возврата в начальную позицию (пуск двигателей с ПМ)	0.1~60.0	сек	3.0

Эта группа параметров активируется, когда настройка P1-63 равна 1 (Возврат в начальную позицию). P1-87 используется для определения времени возврата. P1-86 используется для определения тока во время возврата. 100% соответствует номинальному току двигателя (P1-06).

Пара-	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
метр			VISIVI.	значение
		0: Нет		
P1-91	Функция торможения	1: Тормозной резистор		0
		2: Переменным током		

0: Нет функции;

- 1: Тормозной резистор используется для поглощения избыточной энергии, возникающей в результате торможения двигателя, и предотвращает отключение ПЧ из-за перенапряжения в цепи постоянного тока;
- 2: Торможение переменным током, рассеивает избыточную энергию в сердечнике двигателя, подавая на двигатель более высокое напряжение, и предотвращает отключение ПЧ из-за перенапряжения в цепи постоянного тока. Важно помнить, что частое использование этой функции приведет к повышению температуры двигателя;

Параметр	Наименование параметра	Настройки пара- метра	Ед. изм.	Заводское значение
P1-92	Максимальный ток торможения переменным током	0~150	%	100

Определяет максимально допустимый ток при использовании торможении переменным током во избежание перегрева обмоток двигателя. Значение 100% соответствует току двигателя, установленному в P1-06.

Параметр	Наименование параметра	Настройки пара- метра	Ед. изм.	Заводское значение
P1-93	Усиление для торможения переменным током	1.0~2.0		1.4

Задание скорости реакции торможения переменным током. Высокое значение приводит к более быстрой реакции.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P1-94	Напряжение в цепи постоянного тока, при котором включается тормозной резистор	Зависит от сети питания	В	*

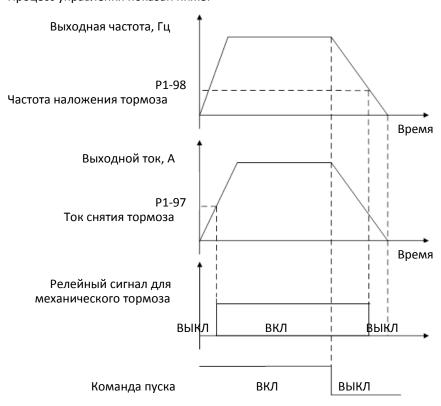
Если P1-91 = 1, то при достижении напряжением цепи постоянного тока значения P1-94 включается тормозной резистор, на который сбрасывается избыточная энергия. Если напряжение цепи постоянного тока падает ниже P1-94, тормозной резистор отключается.

В следующей таблице приведены диапазоны порогового напряжения включения тормозного резистора и значение по умолчанию, которое зависит от напряжения сети питания (параметр P1-01):

Напряжение сети питания	Диапазон значений P1-94	Заводское значение
200~240B	360~395B	385B
380~440B	680~780B	700B
440~480B	750~780B	770B

	Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
ĺ	P1-95	Сопротивление тормозного резистора	5~65535	Ω	*

Ввод сопротивления тормозного резистора.


Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр	Transferrobativie trapamerpa	Пастронил параметра	изм.	значение
P1-97	Ток отпускания механического тормоза		Α	0
P1-98	Частота наложения механического тормоза		Гц	0

Эта функция используется в таких применениях, как лифты, подъемники и т.п., в которых механический тормоз необходим для удержания двигателя от вращения под действием нагрузки. При правильной установке параметров Р1-97 и Р1-98, а также использовании релейного выхода, механический тормоз управляется преобразователем в соответствии с применением. Одному из релейных выходов должна быть назначена функция 42 (см. параметры Р2-28 ~ Р2-33).

Р1-97 работает при пуске: когда ток достигнет заданного значения, реле подаёт сигнал на отключение тормоза (обычно подает напряжение на катушку тормоза).

Р1-98 работает при останове: когда выходная частота снизится до заданного значения, реле подаёт сигнал на включение тормоза (обычно снимает напряжение с катушки тормоза).

Процесс управления показан ниже:

2.4.3. Группа параметров 2: Функции дискретных входов/выходов

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P2-00	Выбор положительной/отрицательной логики для дискретных входов	0~65535		0
P2-02	Режим дискретных входов	0: NPN 1: PNP		0

P2-00 используется для выбора положительной или отрицательной логики клемм дискретных входов. Каждый дискретный вход соответствует разряду. Например: если вы хотите задать клеммам FWD и DI2 отрицательную логику, установите P2-00 на 1+8=9:

Клемма	DI3	DI2	DI1	FEV	FWD
Разряд	16	8	4	2	1

P2-02 используется для выбора режима дискретных входов. В режиме NPN, когда дискретному входу задана положительная логика, подключение дискретного входа к клемме GND включает его (вход активен), отключение входа от клеммы GND — выключает (вход неактивен); когда дискретному входу задана отрицательная логика, подключение дискретного входа к клемме GND выключает его (вход неактивен), отключение входа от клеммы GND — включает (вход активен). В режиме PNP наоборот.

Примечание: существуют обратные функции дискретных входов. Если установлена отрицательная логика, а вход имеет обратную функцию, то функция входа является положительной. Например: когда P2-05 установлен на [4] «Останов. Отрицательная логика», P2-00 установлен на 1 (логика клеммы FWD отрицательна), затем подключите клеммы FWD и GND, функция останова будет активна, отключите клеммы FWD и GND, функция останова неактивна.

Пара-	Наименование параметра	Настройки	Ед.	Заводское
метр	паименование параметра	параметра	изм.	значение
P2-01	Выбор положительной/отрицательной логики для дискретных и релейных выходов	0~65535		0

P2-01 используется для управления положительной или отрицательной логикой клемм дискретного и релейного выходов. Каждый дискретный или релейный выход соответствует разряду. Например: если вы хотите задать клеммам DO1 и Relay2 отрицательную логику, задайте P2-01 = 1 + 4 = 5:

Клемма	Relay2	Relay1	DO5	DO4	DO3	DO2	DO1
Разряд	64	32	16	8	4	2	1

Положительная логика: Когда активирована выбранная функция клемм DO / Relay, клемма DO / Relay выводит сигнал ВКЛ, иначе выводит сигнал ВЫКЛ.

Отрицательная логика: когда активирована выбранная функция клемм DO / Relay, клемма DO / Relay выводит сигнал ВЫКЛ, иначе выводит сигнал ВКЛ.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P2-03	Пуск/стоп одним импульсным сигналом	0: Запрещен 1: Разрешен		0

Если Р2-03=1, то подача импульса на дискретные входы с функциями 13 и 14 (пуск без фиксации) расценивается как пуск, если привод остановлен, и как стоп, если привод работает.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P2-04	Постоянная времени фильтра дискретных входов	2~16	мс	4

Этот параметр используется для установки времени программной фильтрации состояния дискретных входов. Если дискретные входы подвергаются воздействию помех и могут происходить сбои в их работе, увеличьте значение этого параметра, чтобы улучшить защиту от помех. Однако увеличение времени фильтрации уменьшит отклик клемм дискретных входов.

Пара- метр	Наименование парамет- ра	Настройки параметра	Ед. изм.	Заводское значение
P2-05	Функция дискретного входа FWD	0: Нет функции 1: Сброс		10
P2-06	Функция дискретного входа REV	2: Останов на выбеге (отрицательная логика) 3: Останов на выбеге и сброс (отрицательная логика)		12
P2-07	Функция дискретного входа D1	4: Останов (отрицательная логика) 10: Пуск вперед		22
P2-08	Функция дискретного входа D2	11: Реверс 12: Пуск назад		23
P2-09	Функция дискретного входа D3	13: Пуск вперед сигналом без фиксации 14: Пуск назад сигналом без фиксации 15: Толчковый режим вперед 16: Толчковый режим назад 17: Останов сигналом без фиксации 20: Запрет работы вперед 21: Запрет работы назад 22: Выбор предустановленного задания, бит 1 23: Выбор предустановленного задания, бит 2 24: Выбор предустановленного задания, бит 3 25: Выбор предустановленного задания, бит 4 26: Выбор времени разгона/замедления, бит 1 27: Выбор времени разгона/замедления, бит 2 30: БОЛЬШЕ 31: МЕНЬШЕ 32: Счетчик А 34: Сброс счетчика А 35: Счетчик В 40: Импульсный вход (только DI3) 41: Переключение источника задания 42: Переключение режимов скорости/момента 50: Вход сигнала о внешней ошибке 51: Фиксированный выход ПИД-регулятора 64: Пуск для макроса "Насосное применение" 65: Очистка насоса 66: Пожарный режим с командой пуск 67: Пожарный режим без команды пуск		24

Параметры используются для выбора различных функций входов ПЧ. Все дискретные входы могут быть настроены на следующие функции:

- 0: Нет функции, нет реакции на сигналы, передаваемые на клемму;
- 1: Сброс, сброс привода после отключения / тревоги;
- 2: Останов на выбеге (отрицательная логика), отключает выходное напряжение, двигатель при этом останавливается на выбеге. Логика '0' => останов на выбеге;
- 3: Останов на выбеге и сброс (отрицательная логика), ПЧ сбрасывает ошибку, двигатель при этом останавливается на выбеге. Логика '0' => останов на выбеге;
- 4: Останов (отрицательная логика), ПЧ останавливается в соответствии с выбранным временем замедления. Логика '0'=> останов;
- 10: Пуск в прямом направлении. Логика «1» = пуск, логика «0» = останов;
- 11: Выбор вперед/назад, выбор направления вращения двигателя. когда сигнал пуска и сигнал выбора направления вращения активны, двигатель запускается в обратном направлении; когда сигнал пуска активен и сигнал выбора направления вращения не активен, двигатель запускается вперед; когда сигнал запуска не активен, двигатель остановится;
- 12: Пуск в обратном направлении. Логика «1» = пуск, логика «0» = останов;
- 13: Двигатель запускается в прямом направлении с помощью команды пуска, если активный сигнал подается в течение минимум 4 мс и продолжает вращение после снятия сигнала пуска. Двигатель останавливается по команде со входа с функцией [4] Останов (отрицательная логика) или [17] Останов сигналом без фиксации;
- 14: Двигатель запускается в обратном направлении с помощью команды пуска, если активный сигнал подается в течение минимум 4 мс и продолжает вращение после снятия сигнала пуска. Двигатель останавливается по команде со входа с функцией [4] Останов (отрицательная логика) или [17] Останов сигналом без фиксации;
- 15: Толчковый режим вперед, используется для пуска в прямом направлении со скоростью толчкового режима, см. P0-48;
- 16: Толчковый режим назад, используется для пуска в обратном направлении со скоростью толчкового режима, см. P0-48:
- 17: Останов сигналом без фиксации. Двигатель останавливается, если активный сигнал подается в течение минимум 4 мс. Обычно используется в сочетании с 13: Пуск вперед сигналом без фиксации и 14: Пуск назад сигналом без фиксации.
- 20: Запрет работы вперед, когда этот сигнал активен, пуск вперед будет запрещен, но пуск назад будет разрешен; должно быть разрешено управление с клемм (Р0-17), Р0-29 д.б. = 0
- 21: Запрет работы назад, когда этот сигнал активен, пуск назад будет запрещен, но пуск вперед будет разрешен; должно быть разрешено управление с клемм (Р0-17), Р0-29 д.б. = 0
- 22: Выбор предустановленного задания, бит 1. Биты 1...4 позволяет выбрать одно из шестнадцати предустановленных значений (см. $P0-30 \sim P0-45$) в соответствии с таблицей ниже;
- 23: Бит 2 выбора предустановленного значения, аналогично [22];
- 24: Бит 3 выбора предустановленного значения, аналогично [22];
- 25: Бит 4 выбора предустановленного значения, аналогично [22];

Предустановленное значение бит 4	Предустановленное значение бит 3	Предустановленное значение бит 2	Предустановленное значение бит 1	Параметр
ВЫКЛ	ВЫКЛ	ВЫКЛ	ВЫКЛ	P0-30
ВЫКЛ	выкл	ВЫКЛ	ВКЛ	P0-31
ВЫКЛ	выкл	ВКЛ	выкл	P0-32
ВЫКЛ	выкл	ВКЛ	ВКЛ	P0-33
ВЫКЛ	ВКЛ	ВЫКЛ	ВЫКЛ	P0-34
ВЫКЛ	ВКЛ	ВЫКЛ	ВКЛ	P0-35
ВЫКЛ	вкл	ВКЛ	выкл	P0-36
ВЫКЛ	ВКЛ	ВКЛ	ВКЛ	P0-37
ВКЛ	выкл	ВЫКЛ	выкл	P0-38
ВКЛ	ВЫКЛ	ВЫКЛ	ВКЛ	P0-39
ВКЛ	ВЫКЛ	ВКЛ	выкл	P0-40

ВКЛ	выкл	ВКЛ	ВКЛ	P0-41
ВКЛ	ВКЛ	выкл	выкл	P0-42
ВКЛ	ВКЛ	выкл	ВКЛ	P0-43
ВКЛ	ВКЛ	ВКЛ	выкл	P0-44
вкл	ВКЛ	ВКЛ	ВКЛ	P0-45

- 26: Выбор времени разгона/замедления, бит 1;
- 27: Выбор времени разгона/замедления, бит 2;

Время разгона/замедления, бит 2	Время разгона/замедления, бит 1	Параметры
ВЫКЛ	ВЫКЛ	Разгон/замедление 1 (РО-50РО-52)
ВЫКЛ	ВКЛ	Разгон/замедление 2 (Р0-53Р0-55)
ВКЛ	выкл	Разгон/замедление 3 (РО-56РО-58)
ВКЛ	вкл	Разгон/замедление 4 (РО-59РО-61)

- 30: БОЛЬШЕ (увеличить задание), когда клемма активирована менее чем 400 мс, результирующее задание будет увеличено на значение РО-46. Если клемма активируется более 400 мс, результирующее задание будет изменяться в соответствии с настройкой 4 параметра РО-60;
- 31: МЕНЬШЕ (уменьшить задание), аналогично настройке [30] БОЛЬШЕ;
- 32: Счетчик А, счетчик входящих импульсов;
- 34: Сброс счетчика А, очистка значения счетчика А до "0";
- 35: Счетчик В, аналогично [32] Счетчик А;
- 37: Сброс счетчика В, очистка значения счетчика В до "0";
- 40: Импульсный вход, выберите функцию импульсного входа при использовании последовательности импульсов в качестве задания или обратной связи. Масштабирование выполняется в группе параметров P2-5*, функция доступна только для клеммы DI4 (параметр P2-10);
- 41: Переключение источника задания, функция используется параметром P0-10 Выбор источника задания скорости, настройки [3]-[5]. Когда соответствующий вход неактивен, выбран основной источник задания; вход активен, выбран дополнительный источник задания.
- 42: Переключение режимов скорости/момента, когда параметру P0-01 Режим управления задано значение [2] Бездатчиковый режим управления моментом, управление моментом и управление скоростью могут переключаться через клемму дискретного входа. Если клемма отключена, это бездатчиковый режим управления моментом; если клемма включена, это бездатчиковый режим управления скоростью;
- 50: Вход сигнала о внешней ошибке, когда клемма включена, ПЧ будет выполнять действие согласно настройке параметра P2-21.
- 51: Фиксированный выход ПИД-регулятора, ПИД-регулирование временно остановлено, и ПЧ будет работать на текущей частоте.
- 64: При выборе макроса "Насосное применение" для пуска вместо функции [10] используется функция [64].
- 65: При подаче сигнала на этот вход начинается очистка насоса.
- 66: Пожарный режим с командой пуск
- 67: Пожарный режим без команды пуск

Пара-	Наименование параметра	Настройки	Ед.	Заводское
метр		параметра	изм.	значение
P2-21	Действия при поступлении на дискретный вход сигнала ошибки	08		0

Параметр используется для выбора действий, когда вход внешнего сигнала тревоги включен.

- 0: Нет действий;
- 2: Останов и предупреждающий сигнал, при поступлении сигнала внешней ошибки ПЧ останавливается и выдается предупреждающее сообщение "u.76";
- 3: Jog (толчковый режим) и предупреждающий сигнал, при поступлении сигнала внешней ошибки ПЧ работает на предустановленной (Jog) скорости и выдается предупреждающее сообщение "u.76";

- 4: Работа на максимальной скорости (Р5-03) и предупреждающий сигнал, при поступлении сигнала внешней ошибки ПЧ работает на максимальной скорости и выдается предупреждающее сообщение "u.76";
- 5: Аварийный сигнал и плавный останов, при поступлении сигнала внешней ошибки ПЧ плавно останавливается и выдает аварийное сообщение "A.76";
- 6: Предупреждающий сигнал, при поступлении сигнала внешней ошибки ПЧ выдает предупреждающее сообщение "u.76";
- 7: Аварийный сигнал и останов на выбеге.
- 8: Аварийный сигнал "А.76" подается только в том случае, если сигнал ошибки поступил при работе двигателя; двигатель останавливается на выбеге.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P2-22	Выбор функции дискретного выхода DO1	0~75		0
P2-23	Выбор функции дискретного выхода DO2	Аналогично Р2-22		0
P2-24	Выбор функции дискретного выхода DO3	Аналогично Р2-22		0
P2-25	Выбор функции дискретного выхода DO4	Аналогично Р2-22		0
P2-26	Выбор функции дискретного выхода DO5	Аналогично Р2-22		0
P2-28	Выбор функции реле RL1	Аналогично Р2-22		10
P2-31	Выбор функции реле RL2	Аналогично Р2-22		0

Установка функции, которая будет выдавать сигнал на дискретный выход.

Клемма DO1 является программируемой мультиплексной клеммой, она может быть высокоскоростным импульсным выходом или дискретным выходом с открытым коллектором. Если P2-60 = 0, DO1 является дискретным выходом с открытым коллектором; если P2-60 имеет значение, отличное от 0, DO1 используется как высокоскоростной импульсный выход.

Если выход DO1 является дискретным выходом с открытым коллектором, он имеет такие же функции, как у релейного выхода (P2-28 / P2-31).

- 0: Нет функции;
- 1: На плату управления ПЧ подано питание;
- 2: Готовность пульта дистанционного управления, ПЧ готов работать в удаленном режиме;
- 3: ПЧ готов к работе и остановлен;
- 4: ПЧ работает;
- 5: ПЧ работает, предупреждений нет;
- 6: Работа в текущем заданном параметрами Р5-09 и Р5-10 диапазоне тока, предупреждений нет;
- 7: Заданная частота достигнута (±0.3 Гц);
- 8: Двигатель вращается против часовой стрелки;
- 10: Аварийный сигнал;
- 11: Аварийный сигнал или предупреждение;
- 12: Предупреждение о перегреве;
- 13: ПЧ готов к работе, предупреждения о перегреве нет (можно использовать как сигнал готовности);
- 14: ПЧ готов к работе в удаленном режиме, предупреждение о перегреве отсутствует;
- 15: Связь по шине связи работает нормально;
- 20: Выходной ток выходит за пределы диапазона, заданного в Р5-09 и Р5-10;
- 21: Выходной ток ниже, чем задано в Р5-09;
- 22: Выходной ток больше, чем задано в Р5-10;
- 23: Выходная частота выходит за пределы диапазона, заданного в Р5-11 и Р5-12;
- 24: Выходная частота ниже, чем задано в Р5-11;
- 25: Выходная частота выше, чем задано в Р5-12;
- 26: Обратная связь находится за пределами диапазона, заданного в Р5-15 и Р5-16;

- 27: Обратная связь находится ниже уровня обратной связи, заданного в Р5-15;
- 28: Обратная связь находится выше уровня обратной связи, заданного в Р5-16;
- 29: Задание находится за пределами диапазона, заданного в Р5-13 и Р5-14;
- 30: Задание находится ниже предела, заданного в Р5-13;
- 31: Задание находится выше предела, заданного в Р5-14;
- 40: ПЧ находится в локальном режиме;
- 41: ПЧ находится в удаленном режиме;
- 42: Подан сигнал управления механическим тормозом, см. Р1-97 / Р1-98;
- 43: Подан внешний сигнал аварии, функция клеммы дискретного входа [50], дискретный вход для внешнего сигнала аварии;
- 44: Предупреждение о дисбалансе.
- 47: Заданное значение счетчика А достигнуто
- 48: Заданное значение счетчика В достигнуто
- 49: Связь через плату расширения в норме
- 64: Управление насосом 1
- 65: Управление насосом 2
- 66: Управление насосом 3
- 67: Управление насосом 4
- 68: Управление насосом 5
- 69: Управление насосом 6
- 70: Управление насосом 7
- 71: Управление насосом 8
- 72: Очистка насоса
- 73: Заполнение трубы
- 74: Спящий режим
- 75: Переключение на сеть в пожарном режиме

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P2-29	Задержка включения реле RL1	0.00~600.00	сек	0.00
P2-30	Задержка выключения реле RL1	0.00~600.00	сек	0.00
P2-32	Задержка включения реле RL2	0.00~600.00	сек	0.00
P2-33	Задержка выключения реле RL2	0.00~600.00	сек	0.00

Эти параметры используются для установки времени задержки включения и отключения релейного выхода, например:

Когда реле 1 активируется, его срабатывание происходит через время, заданное в Р2-29.

Когда реле 1 становится неактивно, его отключение происходит через время, заданное в Р2-30.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P2-40	Задержка реакции на сигна- лы Больше/Меньше	2~60000	МС	4

Если входы Больше/Меньше активны меньше, чем значение P2-40, задание изменится на величину P0-46. Если входы будут активны дольше P2-40, то задание будет изменяться со скоростью P0-60.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P2-46	Сохранение значения на счетчике (дискретный вход) при отключении питания	0: Не сохраняется 1: Сохранение счетчика А 2: Сохранение счетчика В 3: Сохранение обоих счетчиков А и В		0

Этот параметр используется для управления сохранением значения счетчиков А / В при отключении питания.

Пара-	Наименование параметра Наст	Настройки параметра	Ед.	Заводское
метр			изм.	значение
P2-47	Порог счетчика А	1~65535		65535
P2-48	Порог счетчика В	1~65535		65535

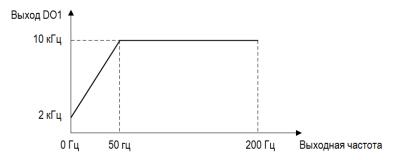
Если количество импульсов, поступившее с дискретного входа на счетчик А (функция дискретного входа 32), достигло значения P2-47, то включается дискретный выход DO1/RL1/RL2 с функцией 47; если количество импульсов, поступившее с дискретного входа на счетчик В (функция дискретного входа 35), достигло значения P2-48, то включается дискретный выход DO1/RL1/RL2 с функцией 48.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P2-50	Мин. частота импульсного входа	0.00~P2-51	кГц	0.00
P2-51	Макс. частота импульсного входа	P2-50~100.00	кГц	50.00
P2-52	значение задания / обратной связи при мини- мальной частоте импульсного входа	-200.00~200.00	%	0.00
P2-53	Значение задания / обратной связи при максимальной частоте импульсного входа	-200.00~200.00	%	100.00
P2-54	Время фильтрации для импульсного входа	1~1000	мс	100

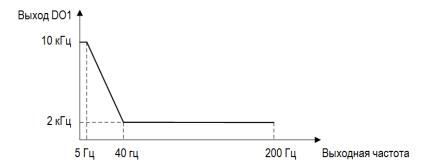
Аналогично использованию аналогового входа пользователь может использовать частоту на входе импульсного сигнала в качестве сигнала задания или обратной связи. Эти параметры используются для задания отношения частоты импульсного сигнала на импульсном входе и величины задания. Значение задания может быть вычислено аналогично использованию аналоговых входов, см. параметры РЗ-0х для аналогового входа AI1.

Примечание: только вход DI3 может быть использован в качестве импульсного; для этого необходимо установить P2-09 = 40.

Пара-	Пара- метр Наименование параметра	Настройки параметра	Ед.	Заводское
метр			изм.	значение
P2-60	Выбор функции импульсного выхода	0~30		0


Функции выхода DO1 приведены ниже:

Значе- ние	Функция	Диапазон
0	Дискретный выход	DO1 выполняет функцию дискретного выхода
1	Выходная частота	Открытый контур управления моментом: 0% = 0, 100% = P5-08 Открытый контур управления скоростью: 0% = 0, 100% = P0-16
2	Выходной ток	0% = 0, 100% = P9-16
3	Выходная мощность	0% = 0, 100% = P1-03
4	Скорость двигателя	0% = 0, 100% = P1-07
5	Выходное напряжение	0% = 0, 100% = P1-04
10	Задание значения	Если P0-15 = 0, то 0% = 0, 100% = P0-16; Если P0-15 = 1, то 0% = -P0-16, 100% = P0-16;
11	Значение обратной связи	
13	Задание значения по шине	
14	Входная частота импульсного входа	0% = P2-50, 100% = P2-51
15	Значение на аналоговом входе AI1	0% = P3-03 или P3-05, 100% = P3-04 или P3-06
16	Значение на аналоговом входе AI2	0% = P3-12 или P3-14, 100% = P3-13 или P3-15
20	Напряжение на шине постоянного тока	0% = 0 B, 100% = 1000 B
30	Выходной момент	0% = 0 H*m, 100% = P1-08


Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P2-61	Мин. частота импульсного выхода	0.00~P2-62	кГц	0.00
P2-62	Макс. частота импульсного выхода	P2-61~100.00	кГц	50.00
P2-63	значение сигнала на выходе при минимальной ча- стоте импульсного выхода	0.00~200.00	%	0.00
P2-64	значение сигнала на выходе при максимальной частоте импульсного выхода	0.00~200.00	%	100.00

P2-61 и P2-62 используются для установки минимальной и максимальной частоты импульсного выхода; P2-63 и P2-64 используются для установки минимального и максимального значения, соответствующего минимальной и максимальной частоте.

Например: в режиме открытого контура управления скоростью установите P0-16=50,0, P2-60=1 (0%=0 Γ ц, 100%=50 Γ ц), P2-61=2 κ Гц, P2-62=10 κ Гц, если P2-63=0,00% (0 Γ ц), P2-64=100,00% (50 Γ ц), тогда соотношение между выходной частотой и частотой импульсов на выходе DO1 показано ниже:

Если P2-63 = 80,00% (40 Гц), P2-64 = 10,00% (5 Гц), то зависимость между выходной частотой и частотой импульсов на выходе DO1 показана ниже:

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P2-70	Разрешение энкодера	0~32767		1024

Этот параметр используется для установки количества импульсов на оборот энкодера.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P2-71	Направление вращения энкодера	0: Вперед 1: Назад		0

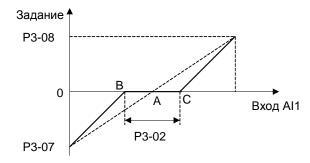
Этот параметр используется для установки последовательности фаз сигнала АВ инкрементного энкодера.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P2-72	Делитель	1~255		1

При установке 1 деления нет, соответствующий выход не работает.

2.4.4. Группа параметров 3: Функции аналоговых входов/выходов

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P3-00	Тип сигнала на аналоговом входе Al1	0: Аналоговый по напряжению 1: Аналоговый по току		0

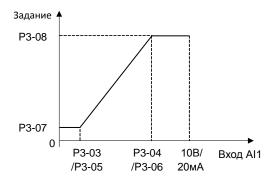

Выбор типа сигнала на аналоговом входе AI1.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P3-01	Время фильтрации для аналогового входа Al1	0.00~10.00	сек	0.01

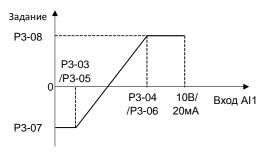
Ввод времени фильтрации для входа AI1. Цифровой низкочастотный фильтр первого порядка предназначен для подавления электрических помех на входе AI1. Большее значение времени фильтрации улучшает демпфирование, но также увеличивает задержку сигнала.

Пара-	Наименование параметра	Настройки пара-	Ед.	Заводское
метр	паименование параметра	метра	изм.	значение
P3-02	Зона нулевого напряжения для аналогового входа AI1	0.00~20.00	В/мА	0.00

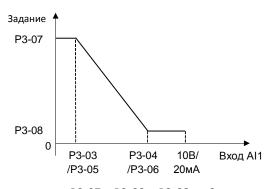
Установите зону нулевого сигнала для AI1. На аналоговом входе AI1 нижняя и верхняя опорные точки имеют противоположные знаки, и должна быть заданная точка, соответствующая аналоговому значению, равному 0. Чтобы предотвратить дрожание заданного значения в нулевой точке из-за аналоговых помех, этот параметр должен быть установлен правильно.

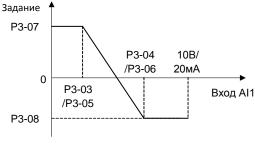

Точка A, показанная на рисунке, является аналоговым значением, которое соответствует заданному нулевому значению. Она рассчитывается с помощью аналоговых нижнего и верхнего опорных значений. После установки на Al1 зоны нулевого сигнала, UAB = UAC = P3-02 / 2. Если сигнал на входе Al1 находится между B и C, задание для входа Al1 равно 0.

Пара-	Наименование параметра	Настройки па-	Ед.	Заводское
метр	Паиіменование Параметра	раметра	изм.	значение
P3-03	Минимальное входное напряжение для аналогового входа Al1	0.00~P3-04	В	0.00
P3-04	Максимальное входное напряжение для аналогового входа Al1	P3-03~10.00	В	10.00
P3-05	Минимальный входной ток для аналогового входа Al1	0.00~ P3-06	мА	0.00
P3-06	Максимальный входной ток для аналогового входа AI1	P3-05~20.00	мА	20.00
P3-07	Значение сигнала на входе при минимальном токе / напряжении на входе Al1	-200.00~200.00	%	0.00
P3-08	Значение сигнала на входе при максимальном токе / напряжении на входе Al1	-200.00~200.00	%	100.00


P3-03 используется для установки минимального входного напряжения; P3-05 используется для установки минимального входного тока; минимальное напряжение и ток аналогового входа соответствуют значению задания / обратной связи, установленному в P3-07.

P3-04 используется для установки максимального напряжения на входе; P3-06 используется для установки максимального тока на входе; максимальное напряжение и ток аналогового входа соответствуют значению задания / обратной связи, установленному в P3-08.


Существует 4 вида кривых соответствия между входным напряжением / током входа Al1 и соответствующим значением задания / обратной связи:


P3-07 < P3-08 и P3-07 >= 0

P3-07 < P3-08 и P3-07 < 0

P3-07 > P3-08 и P3-08 >= 0

P3-07 > P3-08 и P3-08 < 0

Значение задания AI1 / значение обратной связи рассчитывается следующим образом:

Если P3-03 <= значение AI1 <= P3-04,

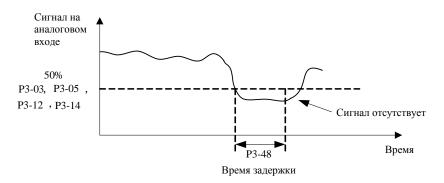
Значение задания AI1 / значение обратной связи = $((P3-08 - P3-07) \div (P3-04 - P3-03) \times (задание AI1 - P3-03) + P3-07) \times P0-16$;

Если значение AI1 <P3-03, значение задания AI1 / значение обратной связи = P3-07 × P0-16;

Если значение AI1> P3-04, значение задания AI1 / значение обратной связи = P3-08 × P0-16;

Примечание. Приведенные выше формулы предназначены для входа по напряжению. Если используется вход по току, вместо РЗ-03 и РЗ-04 используются параметры РЗ-05 и РЗ-06 соответственно.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P3-09	Тип сигнала на аналоговом входе – AI2	0: Аналоговый по напряжению 1: Аналоговый по току		1
P3-10	Время фильтрации для аналогового входа Al2	0.00~10.00	сек	0.01
P3-11	Зона нулевого сигнала для аналогового входа AI2	0.00~20.00	В/мА	0.00
P3-12	Минимальное входное напряжение для аналогового входа Al2	0.00~P3-13	В	0.00
P3-13	Максимальное входное напряжение для аналогового входа Al2	P3-12~10.00	В	10.00
P3-14	Минимальный входной ток для аналогового входа Al2	P3-15~19.99	мА	0.00
P3-15	Максимальный входной ток для аналогового входа AI2	P3-14~20.00	мА	20.00
P3-16	Значение сигнала на входе при минимальном токе / напряжении на входе Al2	-200.00~200.00	%	0.00
P3-17	Значение сигнала на входе при максимальном токе / напряжении на входе Al2	-200.00~200.00	%	100.00


Настройки для входа AI2 аналогичны настройкам входа AI1.

Пара- метр	Наименование параметра	Настройки пара- метра	Ед. изм.	Заводское значение
P3-48	Время задержки определения снижения аналогового сигнала	1~99	сек	10
F 3-40	ниже минимального значения	1 99	CER	10

Эта функция используется для определения наличия входного сигнала. Если выбран вход по напряжению, то минимальное напряжение (P3-03, P3-12) должно быть больше, чем 1В; если выбран вход по току, то минимальный ток (P3-05, P3-14) должен быть больше, чем 2мА. Если аналоговый сигнал меньше, чем 50% от значения параметров P3-03, P3-05, P3-12, P3-14, в течение P3-48, функция включается.

Если аналоговый сигнал вернется к нормальному значению в течение РЗ-48, отсчет задержки прекращается, и накопленное значение сбрасывается.

Диаграмма работы функции показана ниже:

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P3-49	Действие при снижении аналогового сигнала ниже минимального значения	0: Нет 2: Останов и предупреждающий сигнал 3: Работа на скорости толчкового режима и предупреждающий сигнал 4: Работа на максимальной скорости (Р5-03) и предупреждающий сигнал 5: Аварийный сигнал и останов на выбеге		0

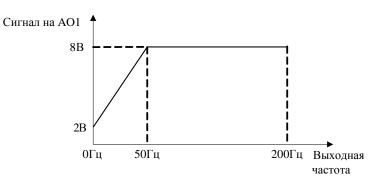
Действие при снижении минимального значения аналогового сигнала.

- 0: Heт;
- 2: Останов и предупреждающий сигнал "u.57";
- 3: Работа на скорости толчкового режима и предупреждающий сигнал "u.57";
- 4: Работа на максимальной скорости (Р5-03) и предупреждающий сигнал "u.57";
- 5: Аварийный сигнал "А.57" и останов на выбеге.

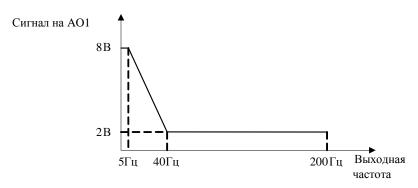
Параметр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
		0: 0~20 mA		
P3-50	Тип сигнала – аналоговый выход АО1	1: 4~20 mA		3
		3: 0~10 B		

Выбор типа выходного аналогового сигнала на выходе АО1.

Параметр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P3-51	Выбор функции – аналоговый выход АО1	0~30		0


Выбор функции – аналоговый выход АО1.

Настройка	Функция	Диапазон
0	Нет функции	
		Открытый контур режима управления моментом:
1	Выходная частота	0% = 0, 100% = P5-08
_		Открытый контур режима управления скоростью:
		0% = 0, 100% = P0-16
2	Выходной ток	0% = 0, 100% = P9-16
3	Выходная мощность	0% = 0, 100% = P1-03
4	Скорость двигателя	0% = 0, 100% = P1-07
5	Выходное напряжение	0% = 0, 100% = P1-04
10	200000000000000000000000000000000000000	Если РО-15 = 0, тогда 0% = 0, 100% = РО-16;
10	Значение задания	Если РО-15 = 1, тогда 0% = -РО-16, 100% = РО-16;
11	Значение обратной связи	
13	Задание значения по шине	
14	Входная частота импульсного входа 1	0% = P2-50, 100% = P2-51
15	Zuguouwo ug gua goronom nyo go Al1	0% = Р3-03 или Р3-05,
15	Значение на аналоговом входе AI1	100% = Р3-04 или Р3-06
16	211211011140 112 2112 FORDOM BYO FO A12	0% = Р3-12 или Р3-14,
10	Значение на аналоговом входе AI2	100% = Р3-13 или Р3-15
20	Напряжение на шине постоянного тока	0% = 0B, 100% = 1000B
30	Выходной момент	0% = 0H·m, 100% = P1-08


Пара- метр	Наименование параметра	Настройки пара- метра	Ед. изм.	Заводское значение
P3-52	Значение сигнала при минимальном токе / напряжении на выходе AO1	0.00~200.00	%	0.00
P3-53	Значение сигнала при максимальном токе / напряжении на выходе AO1	0.00~200.00	%	100.00
P3-54	Мин. выходные напряжение/ток – аналоговый выход АО1	0.00~P3-55		0.00/4.00
P3-55	Макс. выходные напряжение/ток – аналоговый выход АО1	P3-54~10.00/20.00		10.00/20.00

Масштабирование минимального/максимального выходного аналогового сигнала на выходе АО1 в процентах от минимального/ максимального значения сигнала.

Например: в режиме разомкнутого контура управления скоростью установите P0-16=50,0, P3-50=3 (0 $^{\sim}$ 10 B), P3-50=1 (выходная частота 0%=0,0 Гц, 100%=50,0 Гц), P3-52=0,00% (0,0 Гц), P3-53=100,00% (50,0 Гц), P3-54=2 B, P3-55=8 B, соотношение между выходной частотой и выходным сигналом на выходе AO1 показано ниже:

Если P3-52=80.00% (40 Гц), P3-53=10.00% (5 Гц), соотношение между выходной частотой и выходным сигналом на выходе AO1 показано ниже:

Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр	Паименование параметра	пастройки параметра	изм.	значение
P3-68	Минимально задаваемое значение с пульта управления	-200.00~200.00	%	0.00
P3-69	Максимально задаваемое значение с пульта управления	-200.00~200.00	%	100.00

Эти параметры используются для установки минимального/максимального заданного значения с помощью потенциометра на пульте управления.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P3-90	Задание аналоговых входов как дискретных	0: аналоговые входы 1: дискретные входы		0
P3-91	Выбор функции Al1 как DI	Аналогично Р2-05		0
P3-92	Выбор функции AI2 как DI	Аналогично Р2-05		0

Иногда нужны дополнительные дискретные входы, а аналоговые входы не нужны. В этом случае можно использовать аналоговые входы как дискретные, установив соответствующие значения в параметрах выше. Переключение обоих аналоговых входов на дискретные происходит одновременно.

2.4.5. Группа параметров 4: ПИД-регулятор и другие регуляторы

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P4-00	Источник сигнала обратной связи ПИД-регулятора	0: Нет 1: Аналоговый вход Al1 2: Аналоговый вход Al2 3: Аналоговый вход Ml1 4: Аналоговый вход Ml2 5: Импульсный вход 1 31: Выходной ток преобразователя 32: Выходной момент преобразователя 33: Напряжение шины постоянного тока		0

Выбор источника сигнала обратной связи.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P4-01	Источник сигнала задания ПИД-регулятора	0: Нет 1: Аналоговый вход AI1 2: Аналоговый вход AI2 3: Аналоговый вход MI1 4: Аналоговый вход MI2 5: Импульсный вход 1 10: Предустановленное значение 0 + сигналы Больше/Меньше 11: Предустановленные значения P0-30P0-45 20: По последовательной связи (*) 30: С пульта управления		0

Выбор источника сигнала задания ПИД-регулятора:

0: Нет функции;

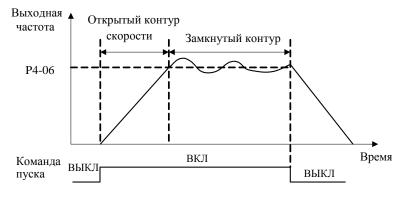
- 1-2: Задание поступает на аналоговые входы АІ1-АІ2, см. Р3-*;
- 3-4: Задание поступает на аналоговые входы MI1-MI2, см. Р3-*;
- 5: Задание поступает на импульсный вход 1 (DI3) см. P2-5*;
- 10: Предустановленное значение 0, изменение сигналами БОЛЬШЕ/МЕНЬШЕ, см. РО-30;
- 11: Предустановленные значения РО-30...РО-45;
- 20: Задание поступает по последовательной связи;
- 30: Задание устанавливается потенциометром пульта управления, см. Р3-68/Р3-69;

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P4-02	Базовое значение для сигналов задания и обратной связи ПИД-регулятора процесса	0.0~3000.0		50.0

Параметр задает базовое значение, принимаемое за 100% для задания и обратной связи ПИД-регулирования.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P4-04	Логика управления ПИД-регулированием процесса	0: Положительная 1: Отрицательная		0

- 0: Положительная, уменьшение/увеличение выходного сигнала ПИД-регулятора, если значение сигнала обратной связи больше/меньше заданного значения;
- 1: Отрицательная, уменьшение/увеличение выходного сигнала ПИД-регулятора, если значение сигнала обратной связи меньше/больше заданного значения;


Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P4-05	Ограничение интегрирования ПИД-регулятора	0: Отключено 1: Включено		0

В случае, если выходной сигнал ПИД-регулятора достиг предела, но ошибка между заданным значением и значением обратной связи все еще существует (в одном и том же знаке), и если интегратор продолжает работать, тогда результат интегрирования будет очень высоким. ПИД-регулятор будет очень долго реагировать на изменение знака ошибки. Это ухудшает качество управления. Функция ограничения интегратора может помочь избежать этой проблемы.

- 0: Отключено, интегрирование продолжается даже когда выходной сигнал ПИД-регулятора достигает своего предела;
- 1: Включено, интегрирование прекращается, когда выходной сигнал ПИД-регулятора достигает своего предела.

Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр	паименование нараметра	пис параметра		значение
P4-06	Минимальная частота при управлении ско-	0.0~200.0	Гц	0.0
1 4 00	ростью от ПИД-регулятора процесса	0.0 200.0	,	0.0

При наличии команды пуска ПЧ будет плавно разгоняться от 0 до Р4-06 в режиме управления скоростью. Когда скорость достигнет задания в Р4-06, управление переключится на ПИД-регулирование, в процессе которого скорость может снижаться ниже Р4-06. Данный процесс показан ниже:

Пара-	Наименование параметра	Настройки	Ед.	Заводское
метр	Transmerrobativie trapamerpa	параметра	изм.	значение
P4-07	Пропорциональный коэффициент ПИД-регулятора процесса	0.0~10.00		0.30

Пропорциональный коэффициент ПИД-регулятора. Ошибка между заданным значением и значением обратной связи умножается на данный коэффициент для получения пропорциональной составляющей выходного сигнала ПИД-

регулятора. Чем больше значение этого коэффициента, тем быстрее работает регулятор, однако слишком большое значение может привести к колебательности.

Внимание: эта функция отключена, если задано значение 0.

Пара-	Наименование параметра	Настройки	Ед.	Заводское
метр		параметра	изм.	значение
P4-08	Интегральный коэффициент ПИД-регулятора процесса	0.01~655.35	сек	10.00

Интегральный коэффициент ПИД-регулятора. Ошибка между заданным значением и значением обратной связи умножается на коэффициент, вычисленный по значению данного параметра, и добавляется к выходному сигналу ПИД-регулятора. Интегрирование обеспечивает устранение ошибки между заданным значением и значением обратной связи. Время интегрирования — это время, необходимое процессу интегрирования для достижения того же усиления, что и пропорциональное усиление. Установка значения 655,35 отключает интегральную составляющую.

Пара	аметр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P4-09)	Дифференциальный коэффициент ПИД-регулятора процесса	0.00~10.00	сек	0.00

Дифференциальный коэффициент ПИД-регулятора. Дифференцирование не реагирует на постоянную ошибку, но обеспечивает усиление только при изменении ошибки. Чем короче время дифференцирования, тем сильнее эффект данного процесса.

Примечание: Установка значения 0.00 отключает интегральную составляющую.

Параметр	Наименование параметра	Настройки па- раметра	Ед. изм.	Заводское значение
P4-13	Предел дифференцирования	1.0~50.0		5.0

Ввод значения ограничения дифференциальной составляющей.

Параметр	Наименование параметра	Настройки па- раметра	Ед. изм.	Заводское значение
P4-14	Минимальное расхождение сигналов задания и обратной связи для работы ПИД-регулятора	0.0~200.0	%	0.1

Когда ошибка между заданным значением и значением обратной связи меньше значения этого параметра, ПИДрегулирование прекращается. Метод остановки или перезапуска ПИД-регулирования определяется параметром Р4-15.

Параметр	Наименование параметра	Настройки па- раметра	Ед. изм.	Заводское значение
P4-15	Изменение в работе ПИД-регулятора процесса при достижении значения расхождения Р4-14	0: Режим 0		
		1: Режим 1 2: Режим 2		0

- 0: Режим 0: если абсолютное значение отклонения >= Р4-14, ПИД-регулятор включен; если абсолютное значение отклонения < Р4-14, ПИД-регулятор отключен, выходное значение ПИД-регулятора не меняется;
- 1: Режим 1: если абсолютное значение отклонения >= Р4-14, ПИД-регулятор включен. Если отклонение > 0, то в качестве ошибки для работы ПИД-регулятора используется сумма реальной ошибки и значения Р4-14; если отклонение < 0, то в качестве ошибки для работы ПИД-регулятора используется разность реальной ошибки и значения Р4-14; если абсолютное значение отклонения < Р4-14, ПИД-регулятор включается в обычном режиме;
- 2: Режим 2: если абсолютное значение отклонения >= Р4-14, ПИД-регулятор включен, но интегральная составляющая не меняется; если абсолютное значение отклонения < Р4-14, ПИД-регулятор работает в обычном режиме;

Пара-	Наименование параметра	Настройки пара-	Ед.	Заводское
метр	паименование параметра	метра	изм.	значение
P4-18	Нижний предел выходного сигнала ПИД-регулятора процесса	-100.00~100.00	%	0.00
P4-19	Верхний предел выходного сигнала ПИД-регулятора процесса	-100.00~100.00	%	100.00

Эти параметры используются для установки нижнего / верхнего предела выхода ПИД-регулятора, 100% соответствует значению P5-03 в режиме управления скоростью.

Пара- метр	Наименование параметра	Настройки пара- метра	Ед. изм.	Заводское значение
P4-20	Источник ограничения максимального значения выхода ПИД-	0~30		0
1 4-20	регулятора процесса	0 30		J

Этот параметр определяет предел скорости при ПИД-регулировании. Если параметр равен 0, верхний предел скорости равен значению Р0-16. Другие варианты соответствуют значениям параметра Р0-11.

Пара-	Наименование параметра	Настройки пара-	Ед.	Заводское
метр		метра	изм.	значение
P4-22	Нижний предел интегральной составляющей ПИД-регулятора процесса	-100.00~100.00	%	0.00
P4-23	Верхний предел интегральной составляющей ПИД-регулятора процесса	-100.00~100.00	%	100.00

Эта группа параметров используется для установки верхнего и нижнего пределов интегральной составляющей ПИД-регулятора.

Пара-	Наименование параметра	Настройки	Ед.	Заводское
метр	Паименование параметра	параметра	изм.	значение
P4-30	Пропорциональный коэффициент ПИД-регулятора скорости	0.000~1.000		0.010
P4-31	Интегральный коэффициент ПИД- регулятора скорости	2.0~2000.0	MC	8.0
P4-32	Дифференциальный коэффициент ПИД- регулятора скорости	0.0~200.0	сек	30.0

Параметры ПИД-регулятора скорости с обратной связью.

Пара-	Наименование параметра	Настройки пара-	Ед.	Заводское
метр		метра	изм.	значение
P4-33	Предел дифференциальной составляющей ПИД- регулятора скорости	1.000~20.000		5.000

Ограничение дифференциальной составляющей ПИД-регулятора.

Пара-	Наименование параметра	Настройки пара-	Ед.	Заводское
метр		метра	изм.	значение
P4-34	Постоянная времени фильтрации сигнала для ПИД-регулятора скорости	1.0~100.0	сек	10.0

Задание постоянной времени для низкочастотного фильтра сигнала управления скоростью. Слишком длительное время фильтрации снижает динамические характеристики.

Пара-	И римонованию парамотра	Настройки па-	Ед.	Заводское
метр	Наименование параметра	раметра	изм.	значение
P4-40	Пропорциональный коэффициент ПИ-регулятора момента	0~500	%	100
P4-41	Интегральный коэффициент ПИ- регулятора момента	0.002~2.000	сек	0.020

Эти параметры определяют работу ПИ-регулятора момента. Они активны только в режиме регулирования момента (РО-01=2). Работа этих параметров аналогична описанию параметров Р4-07/Р4-08.

Пара-	Наименование параметра	Настройки пара-	Ед.	Заводское
метр		метра	изм.	значение
P4-51	Коэффициент усиления контроллера токоограничения (для двигателей с ПМ)	0~400	%	100

Этот параметр работает только при управлении двигателем с постоянными магнитами. Р4-51 вместе с Р4-52, Р4-53 и Р4-54 работают в контроллере ограничения тока, когда ток двигателя достигает предельного уровня, установленного в параметре Р5-07. Динамические характеристики регулятора тока определяются этим параметром, а также пропорциональным и интегральным коэффициентами.

Некорректное значение P4-51, слишком большое значение пропорционального коэффициента и слишком маленькое значение времени интегрирования могут привести к нестабильной работе.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P4-52	Пропорциональный коэффициент контроллера токоограничения	0~500	%	100
P4-53	Интегральный коэффициент контроллера токоограничения	0.000~2.000	сек	0.020
P4-54	Постоянная времени фильтра контроллера токоограничения	2.0~100.0	мс	10.0

Эти параметры используются для настройки ПИ-регулятора ограничения тока, который включится, если ток двигателя увеличится до значения, заданного в параметре Р5-07. Ограничение тока выполняется путем снижения выходной частоты.

Для асинхронных двигателей достаточно установить параметры P4-52, P4-53, P4-54. Для двигателей с постоянными магнитами добавляется параметр P4-51.

Пара-	Наименование параметра	Настройки пара-	Ед.	Заводское
метр		метра	изм.	значение
P4-61	Полоса пропускания ПИ-регулятора Isd	10~200	Гц	30

Пара-	Наименование параметра	Настройки пара-	Ед.	Заводское
метр	Паименование параметра	метра	изм.	значение
P4-62	Коэффициент демпфирования ПИ- регулятора lsd	1~200		100
P4-63	Коэффициент компенсации нагрузки	0.1~1.0		0.5
P4-64	Полоса пропускания ПИ- регулятора Isq	0.01~1.00	Гц	0.03
P4-65	Коэффициент демпфирования ПИ- регулятора Isq	1~200		1

Эта группа параметров действительна только в том случае, если РО-02 настроен на векторное управление 2. Они являются параметрами регулировки контура тока для векторного управления и, как правило, не требуют настройки.

2.4.6. Группа параметров 5: Ограничения, защита и обнаружение ошибок

Пара-	Наименование параметра	Настройки пара-	Ед.	Заводское
метр	Паиіменование параметра	метра	изм.	значение
*P5-02	Нижний предел скорости двигателя	0.0~590.0	Гц	0.0
*P5-03	Верхний предел скорости двигателя	0.0~590.0	Гц	65.0

P5-02 устанавливает нижний предел скорости двигателя. Нижний предел скорости двигателя не должен превышать верхний предел скорости двигателя, заданный в параметре P5-03. Параметры P5-02 и P5-03 используются для ограничения заданного значения.

Пара-	Наименование параметра	Настройки пара-	Ед. изм.	Заводское значение
метр		метра	ИЗМ.	значение
P5-04	Ограничение момента в двигательном режиме	0~1000	%	160
P5-05	Ограничение момента в генераторном режиме	0~1000	%	160

Эти параметры ограничивают момент на валу для защиты механической системы. 100% соответствует номинальному моменту двигателя, заданному в параметре P1-06. Если момент двигателя больше, чем P5-04 / P5-05, ПЧ выдаст предупреждение «u.51».

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P5-06	Источник задания ограничения скорости в режиме управления моментом	0: Нет 1: Аналоговый вход Al1 2: Аналоговый вход Al2 5: Импульсный вход 1 10: Предустановленное значение 0 + сигналы БОЛЬШЕ/МЕНЬШЕ 11: Предустановленные значения 20: Шина последовательной связи 30: Пульт управления		0

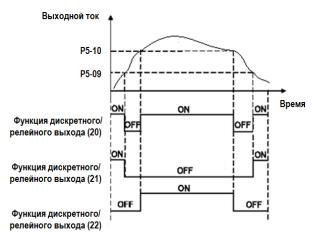
Этот параметр предназначен для выбора способа задания предела скорости в режиме управления моментом. Если задано значение [0], значение ограничения скорости определяется параметром Р5-08. Для других вариантов, см. параметр Р0-11.

Параметр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P5-07	Ограничение максимального тока	0~300	%	*

Этот параметр используется для установки предела выходного тока, 100% соответствует номинальному току двигателя, заданному в параметре Р1-06. Если выходной ток достигает значения, заданного в параметре Р5-07, ПЧ выдаст предупреждение «u.50», и начнет работать токоограничение, заданное в параметрах Р4-5х.

Параметр	Наименование параметра	Настройки параметра	Ед.	Заводское
			изм.	значение
*P5-08	Ограничение максимальной частоты	0.0~590.0	Гц	65

Задание максимальной частоты работы двигателя.


Примечание: некорректная установка данного параметра при работе с асинхронным двигателем может привести к тому, что скорость двигателя не достигнет заданного значения.

Например, при P5-08=50 Гц двигатель не достигнет скорости, соответствующей частоте 50 Гц в генераторном режиме из-за наличия скольжения.

Параметр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P5-09	Порог предупреждения о слабом токе	0.00~P9-16	Α	0.00
P5-10	Порог предупреждения о перегрузке по току	0.00~P9-16	Α	*

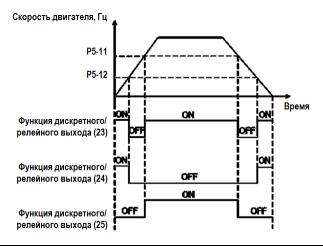

Когда ток двигателя падает ниже значения параметра P5-09 или превышает значение параметра P5-10, может быть подан сигнал на реле или клемму дискретного выхода DO. См. настройки [20], [21] и [22] в параметрах P2-22...26 / 28 / 31.

Диаграмма предупреждения о слабом токе или перегрузке по току показана ниже:

Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр		тастротит парашетра	изм.	значение
P5-11	Порог предупреждения о недостаточной скорости	0.0~590.0	Гц	0.0
P5-12	Порог предупреждения о превышении скорости	0.1~590.0	Гц	65.0

Когда скорость двигателя падает ниже значения параметра P5-11 или превышает значение параметра P5-12, может быть подан сигнал на реле или клемму дискретного выхода DO. См. настройки [23], [24] и [25] в параметрах P2-22...26 /28/31. Диаграмма предупреждения снижения или превышения скорости показана ниже:

Пара-	Наименование параметра	Настройки пара-	Ед.	Заводское
метр	паименование параметра	метра	изм.	значение
P5-13	Порог предупреждения о низком заданном значении	-200.00~200.00	%	0.00
P5-14	Порог предупреждения о высоком заданном значении	-200.00~200.00	%	100.00

Когда заданное значение ниже настройки параметра P5-13 или превышает настройку параметра P5-14, может быть подан сигнал на реле или клемму дискретного выхода DO. 100% соответствует значению, установленному в параметре P0-16 в режиме управления скоростью или в параметре P1-08 в режиме управления моментом. См. функции [29], [30] и [31] в параметрах P2-22...26 /28/31.

Примечание. Эти параметры работают с окончательным заданным значением, определенным параметрами P0-11~P0-14, а не с заданным значением для входов ПИД-регулятора.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P5-15	Порог предупреждения о низком значении обратной связи	-200.00~200.00	%	0.00
P5-16	Порог предупреждения о высоком значении обратной связи	-200.00~200.00	%	100.00

Когда значение сигнала обратной связи ниже настройки параметра P5-15 или превышает настройку параметра P5-16, может быть подан сигнал на реле или клемму дискретного выхода DO. 100% соответствует значению, установленному в параметре P4-02. См. функции [26], [27] и [28] в параметрах P2-22...26 /28/31.

Примечание: эти параметры работают только с источником сигнала обратной связи для ПИД-регулятора, выбранном в параметре Р4-00.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
		0: Отключена		
*P5-17	Защита от потери фазы двигателем	1: Стандартная чувствительность		1
		2: Повышенная чувствительность		

- 0: Защита отключена, в случае обрыва фазы двигатель будет защищен только функцией защиты от перегрузки по току. Это может повредить двигатель, а пользователь может получить неверную информацию о причинах сбоя. Поэтому, выбирать настройку [0] обычно не рекомендуется.
- 1: Защита имеет некоторую задержку, в результате ошибка по перегрузке по току (А.45) может появиться раньше ошибки по обрыву фазы.
- 2: Защита включается немедленно.

Примечание: Защита от потери фазы работает только в том случае, если выходной ток ПЧ превышает 15% от номинального тока преобразователя. Поэтому в случае, если мощность ПЧ намного больше, чем мощность двигателя, и внутри двигателя существует дисбаланс, выбор настройки [0] поможет избежать ложного сигнала аварии по обрыву фазы двигателя.

Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр	Паименование параметра	пастройки параметра	изм.	значение
*DE 10	Предупреждение о выходе за пределы	0: Отключено		1
*P5-18	ограничения тока / момента	1: Включено		1

Этот параметр используется для контроля наличия предупреждений u.50 / u.51, если момент двигателя превышает задание параметров P5-04 / P5-05 или выходной ток превышает задание параметра P5-07.

Примечание. Даже если это предупреждение отключено, защита от превышения тока /момента продолжает действовать.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P5-19	Действие при потере сигнала обратной связи от энкодера	0: Нет 3: Толчковый режим и предупреждение 4: Работа на максимальной скорости, заданной в Р5-03 и предупреждение 5: Аварийный сигнал и останов на выбеге 11: Переключение в бездатчиковый режим управления скоростью		5

Если выбран режим управления с обратной связью по скорости, этот параметр используется для определения действия при сбое сигнала обратной связи по скорости.

- 0: Нет функции, ПЧ будет продолжать работать с неправильной обратной связью
- 3: Толчковый режим и предупреждение, ПЧ будет работать со скоростью толчкового режима и выдаст предупреждение «u.61»
- 4: Работа на максимальной скорости, ПЧ будет работать на максимальной скорости, определенной параметром P5-03, и выдаст предупреждение «u.61»
- 5: Аварийный сигнал и останов на выбеге, ПЧ выдаст аварийный сигнал «А.61» и остановится на выбеге
- 11: Переключение в бездатчиковый режим управления скоростью, ПЧ автоматически переключится в бездатчиковый режим и выдаст предупреждение «u.61».

Пара- метр	Наименование параметра	Настройки парамет- ра	Ед. изм.	Заводское значение
P5-20	Значение ошибки скорости для обнаружения потери обратной связи энкодера	1~6000	об/мин	300
P5-21	Время обнаружения потери обратной связи энкодера	0.00~60.0	сек	2.0

Эти параметры используются для определения неправильной обратной связи по скорости. Если ошибка между сигналом скорости по обратной связи и заданной скоростью превышает задание параметра P5-20 в течение времени, пре-

вышающего заданное в параметре P5-21, будет активировано действие при потере обратной связи, определенное в параметре P5-19. Если ошибка появляется с большой задержкой, уменьшите P5-21. Если ошибка появляется часто, увеличьте значение P5-21. См. также набор параметров P4-3*, чтобы избежать ложных срабатываний.

Пара-	Наименование параметра	Настройки	Ед.	Заводское
метр	Паименование параметра	параметра	изм.	значение
P5-22	Допустимая пауза при связи модуля управления с силовым	0.10~60.00	сек	1.00
	модулем			

Если силовой модуль не получает корректные сообщения от модуля управления в течение времени, превышающего значение параметра P5-22, будет выполнено действие, заданное в параметре P5-23.

Пара-	Наименование парамет-	Настройки параметра	Ед.	Заводское
метр	ра		изм.	значение
P5-23	Действие при превыше- нии паузы связи	0: Нет 2: Останов и предупреждающий сигнал 3: Толчковый режим и предупреждающий сигнал 4: Работа на максимальной скорости (Р5-03) и предупреждающий сигнал 5: Аварийный сигнал и останов на выбеге 6: Предупреждающий сигнал		5

Этот параметр определяет действие в случае, если силовой модуль не получает сообщений от модуля управления в течение времени, превышающего значение P5-22.

- 0: Нет действий, ПЧ продолжит работу согласно последнему полученному командному заданию;
- 2: Останов и предупреждающий сигнал «u.03»
- 3: Работа на скорости толчкового режима и предупреждающий сигнал «u.03»
- 4: Работа на максимальной скорости (Р5-03) и предупреждающий сигнал «u.03»
- 5: Аварийный сигнал «А.03» и останов на выбеге
- 6: ПЧ продолжит работу согласно последнему полученному командному заданию и выдаст предупреждающий сигнал «u.O3»

Пара-	Наименование пара-	Настройки параметра	Ед.	Заводское
метр	метра		изм.	значение
P5-26	Тепловая защита дви- гателя	0: Отключена 1: Предупреждение электронного термореле 2: Аварийный сигнал электронного термореле 3: Предупреждение электронного термореле для двигателя с самовентиляцией 4: Аварийный сигнал электронного термореле для двигателя с самовентиляцией		0

Преобразователь может обеспечить функцию тепловой защиты посредством расчета (ETR = Электронное термореле) тепловой нагрузки двигателя. Расчетная тепловая нагрузка основана на токе двигателя и скорости двигателя в соответствии с настройками в параметрах P5-27 и P5-28.

- 0: Нет функции, тепловая защита двигателя отсутствует
- 1: Предупреждение электронного термореле, если расчетная тепловая нагрузка превышает верхний предел, ПЧ выдает предупреждение «u.49»
- 2: Аварийный сигнал электронного термореле, если расчетная тепловая нагрузка превышает верхний предел, ПЧ выдает аварийное сообщение «А.49», двигатель останавливается выбегом
- 3: Предупреждение электронного термореле для двигателя с самовентиляцией
- 4: Аварийный сигнал электронного термореле для двигателя с самовентиляцией
- [3] и [4] аналогичны [1] и [2], но [3] и [4] предназначены для двигателей с вентилятором на валу двигателя. Их расчетная тепловая нагрузка увеличивается быстрее, более чувствительна к скорости двигателя, и требуется больше времени для сброса расчетной тепловой нагрузки, когда ток двигателя падает.

Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр	паименование параметра	пастройки параметра	изм.	значение
P5-27	Задержка включения тепловой защиты двигателя	0,1~60,0	мин	2,0
P5-28	Порог включения тепловой защиты двигателя	100~160	%	150

При использовании функции электронного термореле, если ток двигателя превышает P1-06 * P5-28 в течение времени P5-27, ПЧ отреагирует так, как задано в параметре P5- 26.

Тепловая защита двигателя основана на вычислении обратного интеграла по времени. Соотношение между током перегрузки и временем защиты (Р5-27) описано ниже:

Ток двигателя (%)	Задержка включения защиты (относительно P5-27)	Ток двигателя (%)	Задержка включения защиты (относительно P5-27)
P5-28+0%	100%	P5-28+30%	20%
P5-28+6%	50%	P5-28+36%	18%
P5-28+12%	33%	P5-28+42%	17%
P5-28+18%	29%	P5-28+48%	16%
P5-28+24%	21%	P5-28+54%	14%

В приведенной выше таблице предполагается, что двигатель работает с номинальной скоростью, ниже приведена таблица для поправочного коэффициента в соответствии со скоростью двигателя (реальное время защиты следует разделить на поправочный коэффициент).

Скорость двигателя (% от Р1-05)	Поправочный коэффициент	Скорость двигателя (% от P1-05)	Поправочный коэффициент
0-12.5%	2.1	100%-112.5%	1
12.5%-25%	2.1	112.5%-125%	1.05
25%-37.5%	1.67	125%-137.5%	1.12
37.5%-50%	1.45	137.5%-150%	1.2
50%-62.5%	1.31	150%-162.5%	1.31
62.5%-75%	1.2	162.5%-175%	1.45
75%-87.5%	1.12	175%-187.5%	1.67
87.5%-100%	1.05	187.5%-Max.	2.1

Например, зададим P5-27=10, P5-28=120%, работа на номинальной частоте, ток составляет 132% от номинального тока двигателя, время защиты составляет 10×33%=3,3 минуты. Если рабочая частота составляет 30 Гц (60% от номинальной частоты), время защиты составляет 3,3÷1,31=2,52 минуты.

Примечание. Необходимо правильно установить коэффициент защиты двигателя от перегрузки Р5-28 в соответствии с фактической перегрузочной способностью двигателя. Если этот параметр задан слишком большим, может случиться так, что двигатель будет перегружен, но ПЧ не успеет включить защиту!

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P5-29	Действие при потере фазы пи- тания	0: Нет 1: Только предупреждение 2: Останов на выбеге и аварийный сигнал (тяжелая нагрузка) 3: Останов на выбеге и аварийный сигнал (средняя нагрузка) 4: Останов на выбеге и аварийный сигнал (легкая нагрузка)		3

- 0: Нет действий. Защита включена не будет, обычно такая настройка не рекомендуется.
- 1: Только предупреждение. ПЧ выдаст предупреждение «u.26» и продолжит работу.
- 2: Останов на выбеге и аварийный сигнал (тяжелая нагрузка). ПЧ выдает аварийный сигнал «А.26» и отключится для останова на выбеге. Но ПЧ может обнаружить потерю фазы сети питания только при полной нагрузке в течение определенного периода времени (обычно, несколько минут).
- 3: Останов на выбеге и аварийный сигнал (средняя нагрузка). ПЧ выдает аварийный сигнал «A.26» и отключится для останова на выбеге. Но ПЧ может обнаружить потерю фазы сети питания только при применении определенного процента от номинальной нагрузки (обычно $30\% \sim 60\%$).

4: Останов на выбеге и аварийный сигнал (легкая нагрузка). ПЧ выдает аварийный сигнал «А.26» и отключится для останова на выбеге. В этом варианте защита может срабатывать очень быстро, когда ПЧ начинает плавно разгонять двигатель.

Пара-	Наименование пара-	Настройки параметра	Ед.	Заводское
метр	метра	пастройки параметра	изм.	значение
	Блокировка предупре-	0: Без блокировки: аварийный сигнал сбрасывается без		
P5-30	ждений и сигналов	отключения питания		1
P3-30		1: Блокировка: аварийный сигнал сбрасывается только		1
	аварии	после отключения и повторного включения питания		

При настройке на заводское значение (по умолчанию) аварийные сигналы и сигналы ошибки (см. 2.6.1) не могут быть сброшены, пока не будет выполнено отключение и повторное включение питания. В некоторых случаях пользователь хочет иметь возможность сбрасывать аварийные сигналы без отключения питания, в этом случае нужно установить P5-30 = 0. Будьте очень осторожны и помните о безопасности.

Пара-	Наименование параметра	Настройки	Ед.	Заводское
метр	Паименование параметра	параметра	изм.	значение
P5-31	Время задержки аварийного сигнала по ограничению тока	0~60	сек	60

Когда выходной ток достигает уровня ограничения тока, установленного в P5-07, выдается предупреждение «u.50». Если предупреждение остается активным в течение времени P5-31, ПЧ остановит двигатель и выдаст аварийный сигнал «A.50». Если P5-31=60, выдача тревожных сигналов и останов не происходят.

Пара-	Наименование параметра	Настройки	Ед.	Заводское
метр	палменование нараметра	параметра	изм.	значение
P5-32	Время задержки аварийного сигнала по ограничению момента	0~60	сек	60

Когда выходной момент достигает предельного уровня, установленного в параметрах P5-04/P5-05, выдается предупреждение «u.51». Если предупреждение остается активным в течение времени P5-32, ПЧ остановит двигатель и выдаст аварийный сигнал «A.51». Если P5-32 = 60, выдача тревожных сигналов и останов не происходят.

Пара-	Наименование парамет-	Настройки параметра	Ед.	Заводское
метр	ра	Пастройки параметра	изм.	значение
	Doğumlur Env Eno Eveno	0: Останов на выбеге и аварийный сигнал		
P5-33	Действия при предупре-	1: Предупреждающий сигнал и подхват двигателя по-		1
	ждающем сигнале	сле устранения причины		

Этот параметр предназначен для задания действия ПЧ при предупреждении, например, о перенапряжении, пониженном напряжении и перегрузке по току, при котором ПЧ должен временно отключить двигатель, а при исчезновении неисправности ПЧ должен восстановить управление двигателем.

- 0: При появлении указанных предупреждений ПЧ остановит двигатель выбегом и выдаст сигнал аварии.
- 1: При появлении указанных предупреждений ПЧ выдаст предупреждение и снимет напряжение с двигателя, обеспечив выбег. Когда неисправность исчезнет, ПЧ попытается подхватить двигатель и продолжить управление.

Пара- метр	Наименование парамет- ра	Настройки параметра	Ед. изм.	Заводское значение
	Способ подхвата двига-	0: Определение скорости (асинхронные и двигатели с		
P5-34	теля при предупрежда-	ПМ) и определение угла (двигатели с ПМ)		0
	ющем сигнале	1: Прямой перезапуск		

Этот параметр определяет способ подхвата двигателя, когда Р5-33 = 1

- 0: Определение скорости (асинхронные и двигатели с ПМ) и определение угла (двигатели с ПМ). ПЧ будет сначала отслеживать скорость (как для асинхронных, так и для двигателей с ПМ) и угол (только для двигателей с ПМ) ротора двигателя, после чего продолжит управлять двигателем, начиная с полученных значений. Если ПЧ не сможет определить скорость и угол, то он начнет управление с нулевой скорости.
- 1: Прямой перезапуск. ПЧ предполагает, что скорость двигателя не изменяется в течение периода выбега, и начнет управление с напряжения, имевшего место на момент предупреждающего сигнала.

Примечание: настройка [1] работает только для асинхронных двигателей. Для двигателей с ПМ будет действительна только настройка [0] независимо от того, какое значение пользователь установит в параметре Р5-34.

Пара-	Наименование параметра	Настройки парамет-	Ед.	Заводское
метр	Паименование параметра	ра	изм.	значение
DE 60	Volume of the property of the	0: Отключен		0
P5-60	Контроль потери нагрузки двигателя	1: Включен		0
P5-61	Порог определения потери нагрузки	0.1~200.0%		5%
P5-62	Задержка определения потери нагрузки	0.1~600.0 c	сек	1.0

Эта функция используется для реакции привода на потерю нагрузки. При установке P5-60=1, если выходной ток остается меньше значения P5-61 в течение времени P5-62, генерируется сигнал аварии A.66.

2.4.7. Группа параметров 6: Работа с пультом управления и дисплей пульта

Пара- метр	Наименование параметра	Настройки парамет- ра	Ед. изм.	Заводское значение
P6-03	Пользовательское значение нулевой скорости	0.0~6553.5		0.00
P6-04	Пользовательское значение максимальной скорости	0.0~6553.5		100.00

Пользовательское значение линейно пропорционально скорости, оно сохраняется в параметре Р9-48.

Расчет пользовательского значения: $P9-48 = (P6-04 - P6-03) \times P9-07 \div P0-16 + P6-03$.

Пара-	Наименование параметра	Настройки парамет-	Ед.	Заводское
метр		ра	изм.	значение
P6-05	Значение, отображаемое на дисплее	0~8191		5

На дисплее пульта всегда отображаются выходная частота, задание и ток двигателя (переключаются коротким нажатием кнопки «ENTER»). Данный параметр используется для дополнительного отображения других переменных (задаются в параметрах Р9-хх). Каждой переменной соответствует вес. Например, если нужно отобразить температуру и значение сигнала на клемме AI1, то необходимо установить: P6-05 = 8 + 128 = 136

Ниже приведен список весов для всех физических переменных.

Bec	Выбранный параметр	Физическая переменная
1	P9-06	Выходное напряжение
2	P9-04	Скорость двигателя
4	P9-11	Напряжение на шине постоянного тока
8	P9-13	Температура радиатора или IGBT
16	P9-20	Значение обратной связи ПИД-регулятора процесса
32	P9-45	Значение счетчика А
64	P9-46	Значение счетчика В
128	P9-24	Входное значение на AI1
256	P9-26	Входное значение на AI2
512	P9-35	Значение на импульсном входе 1
1024	P9-43	Значение на импульсном входе 1
2048	P9-48	Пользовательская переменная (см. Р6-03 и Р6-04)
4096	P9-05	Выходная мощность

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P6-31	Локальный / удаленный режим	0: Удаленный режим 1: Локальный режим		0

^{0:} Удаленный режим, кнопки «ПУСК» и «СТОП» на пульте отключены.

Функция сброса для кнопки «СТОП» остается в силе независимо от того, какой режим выбран. Нажатием кнопки «СТОП» сигнал аварии можно сбросить в обоих режимах.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P6-32	Выбор функции кнопки СВОБ. на штатном пульте КРО1	0: Нет функции 1: Пуск назад		0

^{0:} Нет функции. Кнопка FREE не используется.

Внимание: Кнопка активна только в местном режиме управления. При изменении данного параметра выбранная функция будет использоваться и в пульте КР02, если он будет подключен.

^{1:} Локальный режим, кнопки «ПУСК» и «СТОП» на пульте позволяют запустить и отключить.

^{1:} Кнопка FREE запускает двигатель в обратном направлении.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P6-34	Запрет редактирования параметров	0: Отключен 1: Включен (редактирование запрещено)		0

0: Отключено

Внимание: эта функция действительна только для пульта, не активна для управления по последовательной связи.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
		0: 0,1 Гц		
P6-35	Шаг изменения задания частоты с пульта	1: 1 Гц		1
	,	2: 10 Гц		

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P6-50	Коэффициент индикации скорости двигателя	0.01~655.35		1.00

Значение параметра Р9-04 становится равным | текущая скорость | * Р6-50.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P6-51	Коэффициент индикации тока	0.01~655.35		1.00
P6-52	Коэффициент индикации мощности	0.01~655.35		1.00

Отображаемое значение тока равно реальной величине тока, умноженной на значение Р6-51.

Отображаемое значение мощности равно реальной величине мощности, умноженной на значение Р6-52.

2.4.8. Группа параметров 7: Вспомогательные и специальные функции

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P7-00	Сброс параметров на завод- ские настройки	0: Нет 9: Сброс параметров на заводские настройки		0

0: Нет функции

- 9: Сброс параметров к заводским настройкам. Сброс всех параметров, кроме информации о самом приводе, параметров истории, параметров связи $P0-80 \sim P0-82$ и параметра P0-03.
- Шаг1: Задайте значение параметра P7-00 = 9, нажмите Enter
- Шаг2: Полностью выключите ПЧ, затем снова включите, на пульте отображается «A.01»

Шаг3: Нажмите "СТОП" для сброса «А.01», параметры будут сброшены на заводские значения.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P7-01	Функция при включении пи- тания для локального режима	 0: Продолжение работы с заданием, имевшим место до отключения питания 1: Работа не продолжается, заданное до отключения питания значение сохранено 2: Работа не продолжается, заданное до отключения питания значение сбрасывается 3: Сохранение состояния работы / останова и задания частоты в локальном и удаленном режиме, включая управление по последовательной связи 		1

Выбирает действие при переподключении ПЧ к питающей сети после отключения питания в локальном режиме работы.

- 0: Продолжение работы с заданием, имевшим место до отключения питания. Перезапуск с тем же локальным заданным значением и теми же настройками пуска / останова, что и до отключения ПЧ.
- 1: Работа не продолжается, заданное до отключения питания значение сохраняется. Сохранение состояния остановки, пока не будет дана новая команда пуска. Заданное до выключения ПЧ значение сохраняется и будет использоваться после подачи команды пуска.
- 2: Аналогично 1;

^{1:} Включено и заблокировано, блокировка предназначена для предотвращения несанкционированного редактирования параметров. Для разблокировки необходимо установить P6-34=2018.

3: При отключении и повторном включении питания сохраняется команда стоп/пуск и значение задания, включая команды и задания, поступившие по последовательной связи (Modbus) и с дискретных входов.

В удаленном режиме (Р6-31=0) после включения питания при наличии команды пуск работа возобновляется с установленным заданием. Если необходимо отключить автоматический запуск, необходимо установить Р7-60=3600.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
*P7-10	Минимальная частота коммутации	2~16	кГц	2

Ограничение минимально допустимой частоты коммутации

Если температура IGBT (Р9-13) превысит максимально допустимое значение Tmax (устанавливается производителем, изменению не подлежит), преобразователь остановится по ошибке А.37. Если температура повысится до Tmax-10oC, преобразователь понизит частоту коммутации до Р7-10; если температура снизится до Tmax-15oC, преобразователь автоматически вернет частоту коммутации к значению Р1-00.

При выходной частоте ниже 0.5 Гц частота коммутации снижается по следующему алгоритму: если выходной ток больше номинального, то частота независимо от P7-10 снижается до 5 кГц для типоразмеров D1-D3, до 4 кГц для D4-D5, до 3 кГц для D6 и до 2 кГц для D7-D10; если выходной ток меньше номинального, то при снижении тока на каждые 20% частота коммутации повышается на 1 кГц.

Не допускается установка Р7-10 выше Р1-00.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
*P7-11	Коэффициент перемодуляции	90.0~105.0	%	100.0

Увеличение этого параметра может повысить способность получить на выходе более высокое напряжение, чем в сети. Но этот процесс также может привести к увеличению гармонических искажений напряжения / тока на двигателе.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
*P7-12	Функция компенсации отклонений	0: Компенсация среднего напряжения		0
P7-12	напряжения в цепи постоянного тока	2: Компенсация пульсаций напряжения		U

Когда напряжение постоянного тока изменяется, сигналы ШИМ нуждаются в компенсации, чтобы подать правильное напряжение на двигатель. Этот параметр определяет, как ПЧ компенсирует изменения напряжения.

- 0: Компенсация среднего напряжения постоянного тока. ПЧ компенсирует изменения среднего напряжения постоянного тока без учета пульсаций.
- 2: Компенсация пульсаций. ПЧ компенсирует изменения среднего напряжения и пульсации в цепи постоянного тока. Эта функция может уменьшить уровень гармонических искажений, но эффект будет ограничен, если сетевое напряжение слишком низкое.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P7-13	Компенсация напряжения постоянного тока	0: Отключена		1
	при V/F управлении	1: Включена		1

Эта функция используется для отключения компенсации в режиме управления VF. Обычно это используется для улучшения скорости замедления путем рассеивания энергии торможения в двигателе. Но это может привести к повреждению двигателя в случае высокого напряжения сети.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P7-14	Коэффициент коррекции времени бездей- ствия (dead time)	0~200	%	100

Этот параметр используется для регулировки компенсации времени бездействия (dead time) из-за допуска между идеальным и реальным временем бездействия. 100% означает компенсацию на основе идеального времени бездействия, ниже 100% означает компенсацию меньше идеального времени бездействия, выше 100% означает компенсацию больше, чем идеальное время бездействия.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P7-17	Максимальная частота для коррекции времени бездействия (dead time)	20~590	Гц	*

Начиная с частоты P7-17 и выше, коэффициент компенсации времени бездействия упадет до 0, а функция компенсации времени бездействия отключается. С 0 Гц до частоты P7-17 коэффициент компенсации времени бездействия линейно падает со значения P7-14 до 0.

Пара-	Наименование	Настройки параметра	Ед.	Заводское
метр	параметра			значение
P7-26	Действие при падении напря- жения питания	0: Нет 1: Пассивное снижение скорости 2: Пассивное снижение скорости, аварийное отключение 3: Выбег и подхват двигателя 4: Управление на рекуперации (КЕВ) 5: Управление на рекуперации (КЕВ), аварийное отключение 6: Останов выбегом, аварийный сигнал		0

Этот параметр определяет реакцию, когда сетевое напряжение падает до напряжения, установленного в Р7-27.

- 0: Нет функции. В этом случае срабатывает защита при достижении предела низкого напряжения.
- 1: Пассивное снижение скорости. ПЧ будет управлять скоростью двигателя, следуя за скоростью вращения ротора, момент в этом случае прикладываться не будет, потребление энергии будет минимальным. Без приложения момента скорость двигателя будет непрерывно уменьшаться до 0 Гц. Если напряжение питания восстановится до значения выше заданного в Р7-27, ПЧ вернет двигатель к предыдущей заданной скорости.
- 2: Пассивное снижение скорости, отключение. Отличие от [1] заключается в том, что, если частота упадет до 0 Гц, ПЧ выдаст аварийный сигнал «А.27» и отключится.
- 3: Выбег и подхват двигателя. ПЧ отключит выходное напряжение, двигатель будет останавливаться выбегом. Когда напряжение питания восстановится выше заданного в Р7-27, ПЧ вернет двигатель к предыдущей заданной скорости с функцией подхвата.
- 4: Управление на рекуперации. ПЧ будет активно снижать скорость двигателя, при этом кинетическая энергия механизма будет преобразована в электрическую для питания цепи постоянного тока. Напряжение цепи постоянного тока будет поддерживаться на заданном значении. Таким образом, ПЧ будет работать как можно дольше. В этом варианте, если напряжение питания не восстанавливается, двигатель будет непрерывно замедляться до 0 Гц, Если питание восстановится до значения выше заданного в Р7-27, ПЧ вернет двигатель к предыдущей заданной скорости.
- 5: Управление на рекуперации, отключение. Отличие от [4] заключается в том, что, если частота упадет до 0 Гц, ПЧ выдаст аварийный сигнал «А.27» и отключится.
- 6: Останов выбегом, аварийный сигнал. ПЧ выдаст аварийный сигнал «А.27» и отключится.

Примечание. Для опций [1] - [5] при выполнении выбранной операции ПЧ выдаст предупреждение «А.36». И если сработала защита от пониженного напряжения, ПЧ выдаст предупреждение «u.24», затем аварийное сообщение «A.24» и отключится (если напряжение питания не восстановится в течение достаточного времени).

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P7-27	Порог запуска действия при падении напряжения питания	100~220/380	В	*

Этот параметр определяет пороговое напряжение, при котором должна активироваться выбранная в параметре Р7-26 функция.

Примечания:

- 1. Не устанавливайте значение P7-27 слишком низким или слишком высоким. Обычно значение P7-27 должно составлять $0.7 \sim 0.85$ от номинального напряжения питания. Если пороговое значение слишком низкое, функция будет неэффективна. Если пороговое значение слишком высокое, ПЧ будет слишком часто выполнять действие, заданное в параметре P7-26.
- 2. Если ПЧ питается от источника постоянного тока, пороговое значение будет Р7-27 х 1,4.

Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр			изм.	значение
P7-28	Коэффициент управления режимом рекуперации	0~500	%	100

Коэффициент усиления для опций [4] и [5] из параметра Р7-26.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P7-35	Время сброса счетчика попыток автоматиче- ского сброса аварийного сообщения	0~6000	мин	0

При P7-35=0 функция автосброса неактивна, при P7-35≠0 — активна. Например, при установке P7-35=10 и P7-36=5 преобразователь автоматически сбросит ошибку 5 раз, и если в течение 10 минут ошибка появится вновь, то преобразователь остановится. Если в течение 10 минут преобразователь будет работать без аварийных сообщений, то счетчик числа попыток будет сброшен на 0. Обратите внимание, что в эти 10 минут не включается время останова ПЧ.

Пара-	Наименование пара-	Настройки параметра	Ед.	Заводское
метр	метра		изм.	значение
P7-36	Способ сброса ава- рийного сообщения	0: Сброс по команде 1~10: Автоматический сброс от 1 до 10 раз 11: Автоматический сброс неограниченное число раз		0

Способ сброса аварийного сообщения.

- 0: Сброс по команде. Аварийные сообщения могут быть сброшены нажатием кнопки «СТОП», командой на дискретном входе или по последовательной связи.
- $1 \sim 10$: Автоматический сброс от 1 до 10 раз. ПЧ может автоматически сбрасывать аварийные сообщения от 1 до 10 раз после выдачи аварийных сигналов.
- 11: Автоматический сброс неограниченное число раз.

Примечания:

- 1. ПЧ может сбросить аварийное сообщение только после устранения его причины. Даже если ПЧ не сможет сбросить аварийное сообщение, попытка будет засчитана как один раз в настройках $1 \sim 10$.
- 2. Эта функция работает для заблокированных аварийных сигналов, только если Р5-30 = 0
- 3. Количество раз автоматического сброса будет обнулено при повторном включении ПЧ.
- 4. Эта функция не работает для предупреждающих сообщений.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P7-37	Время задержки автоматического сброса аварийного сообщения	0~600	сек	10

Задание интервала времени от получения аварийного сообщения до выполнения автоматического сброса. Этот параметр активен, только если для параметра P7-36 установлено значение $[1] \sim [11]$.

Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр	паименование параметра	пастройки параметра	изм.	значение
*P7-38	Уровень снижения напряжения в насосно-	40~90	%	90
	вентиляторных применениях (функция VT)			

Ввод уровня намагничивания двигателя на низкой скорости. Выбор низкого значения уменьшает потери энергии в двигателе, но также снижает нагрузочную способность, особенно для пуска.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
*P7-39	Минимальная намагниченность в АЕО	40~75	%	66

Ввод минимальной намагниченности для АЕО. Выбор низкого значения снижает потери энергии в двигателе, но также может снизить устойчивость к внезапным изменениям нагрузки и привести к останову двигателя.

Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр	паименование параметра	пастройки параметра	изм.	значение
P7-40	Коэффициент оптимизации намагниченно- сти (двигатели с ПМ)	-400 ~ 400	%	10

Этот параметр используется для оптимизации баланса потерь в медных и железных элементах двигателя, чтобы оптимизировать рассеивание тепла в двигателе, но общий КПД может не быть оптимальным. Регулировкой параметра Р7-40 также можно изменить ток двигателя. Этот параметр также можно использовать для исправления ошибок настройки параметров двигателя.

Примечание: абсолютное значение этого параметра не должно быть слишком высоким.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
		0: Автоматическое		
P7-41	Управление вентилятором охлаждения	4: По температуре радиатора		0
		5: Постоянная работа		

^{0:} Работой вентилятора управляет логика преобразователя. Для типоразмеров D1-D6 вентилятор может только включаться и выключаться. Для типоразмеров D7-D10 скорость вентилятора определяется температурой радиатора. При температуре ниже 40° C скорость вентилятора составляет 20%, при температуре больше 65° C скорость составляет 100%. От 40° C до 65° C скорость меняется по линейному закону.

5: Вентилятор работает всегда.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P7-46	Пороговое напряжение функции контроля перенапряжения (OVC)	Зависит от напряжения цепи пита- ния	В	*

Когда напряжение цепи постоянного тока превышает значение параметра Р7-46, активируется функция контроля перенапряжения, определенная в параметре Р7-47.

В следующей таблице приведены диапазон порогового напряжения для контроля перенапряжения и значение по умолчанию в зависимости от типа сети питания (параметр P1-01):

Тип сети питания	Диапазон	Значение по умолчанию
200~240B	360~395B	385B
380~440B	680~780B	710B
440~480B	750~780B	780B

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P7-47	Функция контроля перенапряже-	0: Отключена		0
	ния (OVC)	1: Режим 1		U
	,	2: Режим 2		

Контроль перенапряжения (OVC) может ограничивать напряжение в цепи постоянного тока при замедлении двигателя путем ограничения скорости замедления. Он не подходит для применений с длительным возвратом энергии, например, лифтовых.

0: Отключена;

- 1: Режим 1. Управление увеличением напряжения в цепи постоянного тока, ограничивая скорость замедления.
- 2: Режим 2. Применяется обычно для очень быстрого замедления;

Примечание: Если Р1-94 больше, чем Р7-46, то сначала включается резистивное торможение, если Р7-46 больше, чем Р1-94, то сначала включается функция контроля перенапряжения.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P7-48	Время интегрирования функции контроля перена- пряжения (OVC)	0.01~0.10	сек	0.05
P7-49	Коэффициент пропорциональности функции контроля перенапряжения (OVC)	0~200	%	100

Настройки контроллера, используемого в управлении OVC. Динамика работы контроллера может быть настроена изменением этих параметров. Увеличение пропорционального коэффициента и уменьшение времени интегрирования ускоряют реакцию контроллера перенапряжения, но слишком высокое значение пропорционального коэффициента и слишком малое время интегрирования могут дестабилизировать управление перенапряжением. Обычно настройка этих параметров не требуется.

Примечание. Эти параметры активны только при выборе режима 1 или режима 2 в Р7-47.

^{4:} При температуре больше 40° С вентилятор запускается, при температуре ниже 35° С – останавливается через 16 с. Этот режим допустим только для типоразмеров D1-D6.

Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр	Паименование Параметра	пастройки параметра	изм.	значение
P7-50	Нижняя граница пропускаемой частоты 1	0.0~590.0	Гц	0.0
P7-51	Верхняя граница пропускаемой частоты 1	0.0~590.0	Гц	0.0
P7-52	Нижняя граница пропускаемой частоты 2	0.0~590.0	Гц	0.0
P7-53	Верхняя граница пропускаемой частоты 2	0.0~590.0	Гц	0.0
P7-54	Нижняя граница пропускаемой частоты 3	0.0~590.0	Гц	0.0
P7-55	Верхняя граница пропускаемой частоты 3	0.0~590.0	Гц	0.0

Эти параметры используются для определения 3 диапазонов скоростей, в которых двигатель вращаться не должен во избежание механического резонанса. Если скорость задана в пределах диапазонов, реальное значение задания будет оставаться на нижней границе пропускаемого диапазона при увеличении задания, и на верхней границе при его снижении. Например, при P7-50 = 10 Гц и P7-51 = 20 Гц при росте задания от 0 до 10 Гц реальное задание будет равно заданию; при дальнейшем росте задания от 10 до 20 Гц реальное задание будет равно 10 Гц; при росте задания от 20 Гц и выше реальное задание будет равно заданию. При снижении задания от 50 Гц до 20 Гц реальное задание будет равно 20 Гц, при снижении задания от 10 Гц до 0 реальное задание будет равно заданию.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P7-60	Задержка автоперезапуска после включения питания	0~3600	С	0

Если привод настроен на возобновление работы после перерыва в питании, то в данном параметре устанавливается задержка пуска. Значение 3600 отключает функцию автоперезапуска, и для пуска требуется новая команда.

2.4.9. Группа параметров 8: Базовая и текущая информация

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P8-00	Версия прошивки силового модуля			
P8-01	Версия прошивки модуля управления			

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P8-30	Полное число дней, когда подавалось питание	0~9999	дни	

Полное число дней, когда подавалось питание на ПЧ. Это значение не может быть сброшено.

Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр	паименование параметра	пастройки параметра	изм.	значение
P8-31	Полное время работы	0~60000	ч	

Просмотр количества часов работы. Сброс значения до 0 осуществляется с помощью параметра Р8-37.

Пар мет	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P8-32	Полная потребленная энергия	0~65535	кВт*ч	

Просмотр общей потребленной энергии. Сброс значения до 0 осуществляется с помощью параметра Р8-36.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P8-33	Количество включений питания	0~65535		

Количество подач питания. Это значение не может быть сброшено.

Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр		Пастроики параметра	изм.	значение
P8-34	Количество перегревов	0~65535		

Просмотр количества произошедших перегревов. Это значение не может быть сброшено.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P8-35	Количество перенапряжений	0~65535		

Просмотр количества произошедших перенапряжений. Это значение не может быть сброшено.

Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр	and the second s	and the second second	изм.	значение
P8-36	Сброс счетчика потребленной энергии	0: Нет сброса		0
1 '	·	1: Сброс		

^{0:} Нет сброса;

Внимание: этот параметр нельзя задать посредством последовательной связи.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P8-37	Сброс счетчика времени работы	0: Нет сброса 1: Сброс		0

^{0:} Нет сброса;

Внимание: этот параметр нельзя задать посредством последовательной связи.

Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр	паименование параметра	пастройки параметра	изм.	значение
P8-39	Полное время работы	0~60000	ч	0

Этот параметр аналогичен параметру Р8-31, однако его значение нельзя сбросить.

Параметр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P8-40~P8-49	Журнал аварий			

Журнал содержит 10 последних аварийных сообщений.

Параметр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P8-50~P8-59	Журнал предупреждений			

Журнал содержит 10 последних предупреждающих сообщений.

2.4.10. Группа параметров 9: Мониторинг состояния в реальном времени

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P9-00	Слово управления			
P9-01	Слово состояния	0~65535		
P9-02	Заданное значение	-4999.0~4999.0		
P9-04	Скорость двигателя	0~24000	Об/мин	
P9-05	Выходная мощность	0.000~655.35	кВт	
P9-06	Выходное напряжение	0.0~6553.5	В	
P9-07	Выходная частота	0.0~590.0	Гц	
P9-08	Выходной ток	0.00~655.35	Α	
P9-09	Выходной момент	-200.0~200.0	%	
P9-10	Состояние тепловой нагрузки двигателя	0~100	%	
P9-11	Напряжение на шине постоянного тока	0~65535	В	
P9-12	Задание момента			
P9-13	Температура радиатора или IGBT	-128~127	°C	
P9-14	Состояние тепловой нагрузки ПЧ	0~255	%	
P9-15	Номинальный ток ПЧ	0.0~6553.5	Α	
P9-16	Максимальный ток ПЧ	0.0~6553.5	Α	
P9-19	Заданное значение ПИД-регулятора	-200.0~200.0	%	
P9-20	Значение обратной связи ПИД-регулятора	-200.0~200.0		
P9-21	Выходной сигнал ПИД-регулятора	-200.0~200.0	%	

Эти параметры используются для просмотра текущего состояния ПЧ.

Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр	паименование параметра		изм.	значение
P9-22	Состояние дискретных входов	0~65535	•	

^{1:} Сброс на нулевое значение (см. параметр Р8-32);

^{1:} Сброс на нулевое значение (см. параметр Р8-31);

Просмотр состояния дискретных входов. Каждому дискретному входу соответствует весовой коэффициент, как показано в таблице ниже. Если ПЧ обнаруживает сигнал на дискретном входе, то его весовой коэффициент включается в общую сумму.

Например: P9-22 = 10 = 8 + 2 – активны дискретные входы REV и DI2.

Вход	DI3	DI2	DI1	REV	FWD
Весовой коэффициент	16	8	4	2	1

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
Р9-23 Тип ан	Тип аналогового входа Al1	0: 0~10 B		
P9-23	Тип аналогового входа Агт	1: 0~20 MA		
P9-24	Входное значение на AI1	0.00-20.00	В/мА	
DO 3E	Turn qua noronara pya na Al2	0: 0~10 B		
P9-25	Тип аналогового входа Al2	1: 0~20 MA		
P9-26	Входное значение на AI2	0.00-20.00	В/мА	

Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр	Паименование нараметра	пастроини параметра	изм.	значение
P9-34	Входное значение на импульсном входе	-200.0~200.0	%	
P9-35	Частота на импульсном входе	0.00~100.00	кГц	

Пара-	Наименование папаметла	Настройки параметра	Ед.	Заводское
метр	Наименование параметра	Пастройки параметра	изм.	значение
P9-37	Скорость по энкодеру			

Просмотр скорости обратной связи от энкодера в оборотах в секунду, скорость двигателя равна значению, умноженному на количество пар полюсов двигателя.

Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр	Паименование параметра	пастройки параметра	изм.	значение
P9-38	Состояние дискретных выходов DO1-DO5	0~255		

Просмотр состояния дискретных выходов. Каждому дискретному выходу соответствует весовой коэффициент, как показано в таблице ниже. Если ПЧ обнаруживает сигнал на дискретном выходе, то его весовой коэффициент включается в общую сумму.

Например: P9-38 = 13 = 8 + 4 + 1 — активны дискретные выходы DO4, DO3 и DO1.

Выход	DO5	DO4	DO3	DO2	DO1
Весовой коэффициент	16	8	4	2	1

Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр	палменование нараметра		изм.	значение
P9-39	Состояние релейных выходов	0~65535		

Просмотр состояния релейных выходов. Каждому релейному выходу соответствует весовой коэффициент, как показано в таблице ниже. Если ПЧ обнаруживает сигнал на релейном выходе, то его весовой коэффициент включается в общую сумму. Например: P9-39 = 1 — активен релейный выход Relay1.

Реле	Relay 2	Relay 1
Весовой коэффициент	2	1

Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр	паименование параметра	пастройки параметра	изм.	значение
P9-40	Значение на аналоговом выходе АО1	0.00-20.00	В/мА	

Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр			изм.	значение
P9-43	Частота на импульсном выходе	0.00~100.00	кГц	

Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр	Паименование параметра	пастройки параметра	изм.	значение
P9-45	Значение счетчика А	0~65535		

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P9-46	Значение счетчика В	0~65535		
P9-47	Задание по шине последовательной связи	-32768~32767		
P9-48	Пользовательская переменная	0~6553.5		

2.4.11. Группа параметров 10: Опции

Описание параметров этой группы содержится в руководствах на опциональные модули.

2.4.12. Группа параметров 19: Простой ПЛК

Пара- метр	Наименование пара- метра	Настройки параметра	Ед. изм.	Заводское значение
		0: Один цикл, затем работа на последней частоте		
P19-00	Режим работы	1: Один цикл, затем останов		0
		2. Циклическая работа		

- 0: После выполнения цикла работа продолжается на скорости последнего шага.
- 1: После выполнения цикла привод останавливается.
- 2: После выполнения цикла начинается следующий цикл.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P19-01	Запоминание текущего шага	0: Нет 1: Запоминание при останове		0
		2: Запоминание при отключении питания		

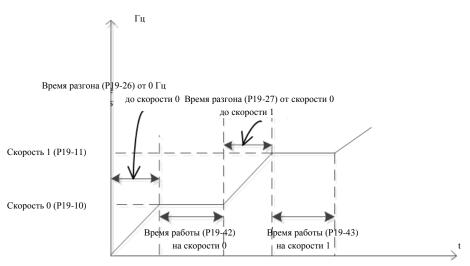
- 0: Текущий шаг не запоминается при останове или отключении питания.
- 1: При останове текущий шаг запоминается.
- 2: При останове или отключении питания текущий шаг запоминается.

Внимание: Если текущий шаг сохранен в памяти, то при пуске работа начинается с этого шага. Если текущий шаг не сохранен, то работа начинается с 0 Гц и с первого шага.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P19-02	Сброс количества сбросов простого ПЛК	0: Нет функции 1: Сброс		0

При установке Р19-02=1 количество сбросов простого ПЛК (Р19-83) обнуляется.

Параметр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P19-10P19-25	Скорость на шаге 0 Скорость на шаге 15	-100,00%100,00%	%	0


Задание частоты на 16-ти шагах; 0,00% соответствует 0 Гц, 100,00% соответствует РО-16.

Параметр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P19-26P19-41	Время разгона/замедления на шаге 0 Время разгона/замедления на шаге 15	0,06000,0	С	0

16 значений времен разгона/замедления для перехода от текущего шага к следующему. Пример: Если 19-27=5с, то понадобится 5 с для перехода от частоты шага 0 (Р19-10) к частоте шага 1 (Р19-11).

Параметр	Параметр Наименование параметра		Ед.	Заводское
The parties of		параметра	изм.	значение
P19-42P19-57	Время работы на шаге 0 Время работы на шаге 15	0,06000,0	С	0

Времена работы на 16-ти шагах. См. диаграмму ниже.

Время работы и время разгона / замедления

Внимание: Если время разгона/замедления и время работы на шаге X равны 0, то все следующие шаги игнорируются. Например, если P19-29 (время разгона/замедления на шаге 3) и P19-45 (время работы на шаге 3) равны 0, то шаги с 3 по 15 игнорируются.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P19-80	Средняя скорость	065535	об/мин	

Параметр только для чтения, отображает среднюю скорость привода за цикл.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
<u> </u>				
P19-81	Текущий шаг	015		

Параметр только для чтения, отображает номер исполняемого шага.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P19-82	Время на текущем шаге	0,06553,0	С	

Параметр только для чтения, отображает время на текущем шаге.

Пара-	Наименование параметра	Настройки параметра	Ед. изм.	Заводское
метр				значение
P19-83	Количество сбросов простого ПЛК	065535		

Параметр только для чтения, отображает Количество сбросов простого ПЛК.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P19-84	Время работы в текущем цикле	0,06553,5	мин	

Параметр только для чтения, отображает время работы в текущем цикле. При начале нового цикла значение сбрасывается в 0, и отсчет начинается с начала.

Внимание: Последовательность настройки простого ПЛК:

- а. Установите РО-03=2 (Включение функции ПЛК)
- b. Назначьте одному из дискретных входов DI функцию 64 (P2-05...P2-09)
- с. Установите параметры группы 19 в соответствии с требованиями применения.
- d. Убедитесь, что привод находится в режиме внешнего управления и подайте на вход с функцией 64 сигнал запуска цикла.

2.4.13. Группа параметров 20: Насосное применение

Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр	Паименование параметра	пастройки параметра	изм.	значение
P20-00	Режим работы	0: поддержание давления		0

0: Поддержание давления в замкнутой системе. Автоматически устанавливаются параметры P0-11=21 (источник задания — выход ПИД-регулятора процесса), P4-00=1 (источник обратной связи по давлению AI1, по умолчанию 0-10 B), P4-01=11 (установка задания давления в параметре P0-30).

Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр	Паименование параметра	пастройки параметра	изм.	значение
P20-01	Минимальная выходная частота	0,00P20-02	%	40
P20-02	Максимальная выходная частота	P20-01100,00	%	100

Диапазон выходной частоты: 0,00% соответствует 0 Гц, 100% соответствует РО-16.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P20-03	Верхнее ограничение давления	0.00~150.00	%	100.00

Если сигнал обратной связи по давлению больше P20-23 в течение 0,1 сек, то появится сигнал аварии A.162 (Повышенное давление). При P20-03=0.00% эта защита отключена.

Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр	паименование нараметра	пастронки параметра	изм.	значение
P20-04	Нижнее ограничение давления	0.00~80.00	%	0.00
P20-05	Задержка сигнала о низком давлении	0.0~60.0	сек	10.0

Если выполняются все условия, указанные ниже, в течение времени Р20-05, то появится сигнал аварии А.163 (Пониженное давление):

- 1) сигнал обратной связи по давлению ниже Р20-04,
- 2) Выходная частота ≥ Р20-09,
- 3) Выходной ток больше Р20-30

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
		0: Нет		
P20-06	Источник обратной связи по расходу	1: Al1		0
		2: AI2		

Выбор входа сигнала обратной связи по расходу.

Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр	Паименование параметра		изм.	значение
P20-07	Уровень индикации потери обрат- ной связи ПИД-регулятора	0.00~5.00 (0.00: функция отключена)	%	0.00
P20-08	Задержка сигнала о потере обратной связи ПИД-регулятора	0.0~100.0	сек	20.0

Если выполняются все условия, указанные ниже, в течение времени Р20-08, то появится сигнал аварии А.161 (Потеря обратной связи ПИД-регулятора):

- 1) сигнал обратной связи ПИД-регулятора ≤ Р20-07,
- 2) Выходной ток больше Р20-30,
- 3) Выходная частота ≥ Р20-29.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P20-16	Действия при потере обратной связи ПИД-регулятора	0: Сигнал аварии и останов 1: Предупреждение и работа на частоте РО-45		0

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P20-17	Направление вращения в пожарном режиме	0: Вперед 1: Назад		0

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P20-22	Режим заполнения трубы	0: Выключен		0
1 20 22	20-22 гежим заполнения трубы	1: Включен		
P20-23	Частота при заполнении трубы	0.00~100.00	%	60.00
P20-24	Длительность заполнения трубы	0.0~6000.0	сек	10.0
P20-25	Давление заполнения трубы	0.00~100.00	%	30.00

Эти параметры используются для реализации функции заполнения трубы.

При первом пуске, если P20-22=1, привод переходит в режим заполнения трубы и работает на частоте P20-23 до тех пор, пока:

- 1) сигнал давления превысит Р20-25, или
- 2) время работы в этом режиме превысит Р20-24.

Если выполняется одно из этих условий, преобразователь переходит в обычный режим регулирования.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P20-26	Количество заданий ПИД-регулятора	0~4		0
P20-87	Время включения задания Т1	0.00~23.59		0.00
P20-88	Время включения задания Т2	0.00~23.59		0.00
P20-89	Время включения задания Т3	0.00~23.59		0.00
P20-90	Время включения задания Т4	0.00~23.59		0.00

Эти параметры используются при работе ПИД-регулятора по расписанию. Конкретное задание выбирается по времени суток; поддерживается 4 различных задания. В параметре P20-26 устанавливается количество используемых заданий, при P20-26=0 данная функция отключена, и используется задание, установленное в параметре P0-30. В параметрах P20-87... P20-90 устанавливается время начала работы по соответствующему заданию, сами задания устанавливаются в параметрах P0-32...P0-35.

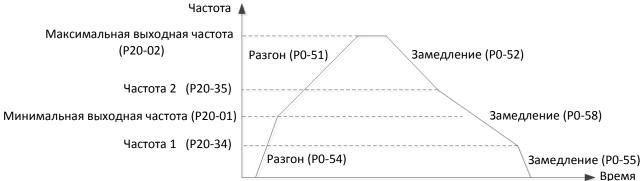
С 0 часов до времени P20-87 используется задание P0-31, с P20-87 до P20-88 используется задание T1 (P0-32), с P20-88 до P20-89 используется задание T2 (P0-33), с P20-89 до P20-90 используется задание T3 (P0-34), с P20-90 до 0 часов используется задание T4 (P0-35). Обычно P0-31 устанавливается равным последнему используемому заданию, но это не обязательно.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P20-27	Определение сухого хода	0: Отключено		0
F 20-27	Определение сухого хода	1: Включено		U
P20-28	Давление индикации сухого хода	0.00~100.00	%	4.00
P20-29	Частота индикации сухого хода	0.00~100.00	%	96.00
P20-30	Ток индикации сухого хода	0.0~100.0	%	40.0

Эти параметры используются для определения сухого хода. Если выполняются все условия, указанные ниже, то появится сигнал аварии А.160 (Сухой ход):

- 1) P20-27=1,
- 2) Сигнал обратной связи по давлению меньше Р20-28,
- 3) Выходная частота ≥ Р20-29,
- 4) Выходной ток ≤ Р20-30.

Значение Р20-30 указывается в % от Р1-06 (Номинальный ток двигателя).


Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр	паименование параметра	Пастройки Параметра	изм.	значение
P20-34	Частота 1 защиты обратного клапана	0.00~P20-01	%	0.00
P20-35	Частота 2 защиты обратного клапана	P20-01~100.00	%	40.00

Эти параметры используются для защиты обратного клапана при разгоне и замедлении.

При пуске насос разгоняется до P20-01 (Минимальная выходная частота) в соответствии с временем разгона 2 (P0-54). Далее разгон идет в соответствии с временем разгона 1 (P0-51).

При останове:

- 1) Насос замедляется до P20-35 в соответствии с временем замедления 1 (P0-52).
- 2) Насос замедляется от Р20-35 до Р20-34 в соответствии с временем замедления 3 (Р0-58).
- 3) Насос замедляется от Р20-34 до 0 в соответствии с временем замедления 2 (Р0-55).

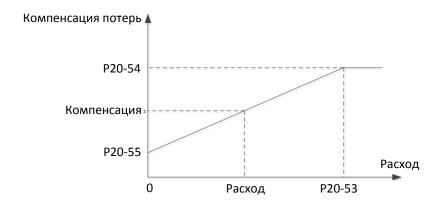
Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр	талменование нараметра	пастройки параметра	изм.	значение
P20-36	День недели	1~7		
P20-37	Текущее время	0.00~23.59		

Эти параметры отображают день недели и время по часам преобразователя.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P20-40	Работа в каскадном режиме по сети	0: Выключена 1: Включена		0
P20-41	Адрес в сети	1: Ведущий 2~5: Ведомые 1-4		2
P20-42	Режим резервного ведущего	0: Выключен 1: Включен		0
P20-43	Частота при отсутствии связи	0.00~100.00	%	90.00

Эти параметры используются для организации работы в каскадном режиме по сети. Параметр P20-40 включает этот режим. В параметре P20-41 устанавливается адрес преобразователя в сети RS485. Параметр P20-42 используется для включения режима резервного ведущего. Установка этого параметра на ведущем игнорируется. Этот режим может быть установлен только на одном ведомом. Параметр P20-43 определяет скорость работы ведомого при обрыве связи; на ведущем этот параметр игнорируется.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P20-45	Установка года	2023~2099		2023
P20-46	Установка даты	1.01~12.31		1.01
P20-47	Установка времени	0.00~23.59		0.00


Эти параметры устанавливают год, месяц, дату и время в часах преобразователя.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P20-48	Режим включения/выключения по	0: Выключен		0
P20-46	времени	1: Включен		U
		1: Понедельник		
	Dution such us so su (suums soossos	2: Вторник		
		4: Среда		
P20-49	Выбор дней недели (сумма соответ- ствующих значений)	8: Четверг		
	ствующих значении)	16: Пятница		
		32: Суббота		
		64: Воскресенье		
P20-50	Время включения	0.00~23.59		0.00
P20-51	Время выключения	0.00~23.59		0.00

Эти параметры используются при настройке пуска и останова по времени. Время пуска и останова устанавливается отдельно. В параметре P20-49 задаются дни недели, в которые будет осуществляться пуск; каждый день недели имеет свой вес. Например, если необходимо запускать насос в понедельник и среду, то значение этого параметра должно быть 1 + 4 = 5. Установите желаемое время включения и выключения насоса. Если пуск и останов должны выполняться в течение одного дня, то время P20-50 должно быть меньше P20-51. Если пуск останов должен выполняться на следующий день, то время P20-50 должно быть больше P20-51, и должны быть указаны два смежных рабочих дня.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P20-52	Режим компенсации потерь давления	0: Выключен 1: Включен		0
P20-53	Номинальный расход	10.00~100.00	%	80.00
P20-54	Потери при номинальном расходе	P20-55~100.00	%	15.00
P20-55	Статические потери	0.00~P20-54	%	0.00
P20-57	Расход	0.00~100.00	%	_

Эти параметры предназначены для компенсации потерь в системе. Компенсация осуществляется путем коррекции задания. Ниже показана зависимость величины компенсации от расхода:

Пара-	ра- Наименование параметра Настройн	Настройки параметра	Ед.	Заводское
метр	паименование параметра	пастроики параметра	изм.	значение
P20-58	Задержка сигнала о порыве трубы	0~1000	сек	0
P20-59	Уровень определения порыва трубы	P20-28~40.00	%	10.00

Если выходная частота ПЧ ≥ Р20-29, сигнал обратной связи по давлению меньше Р20-59, то с задержкой Р20-58 появится сигнал аварии А.164 (Порыв трубы).

При Р20-58=0 эта защита отключена.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P20-60	Включение спящего режима	0: Выключен 1: Включен		0

Пара-	Наимонование параметра	Настройки параметра	Ед.	Заводское
метр	Наименование параметра	пастроики параметра	изм.	значение
P20-61	Частота входа в спящий режим	0,00100,00	%	2

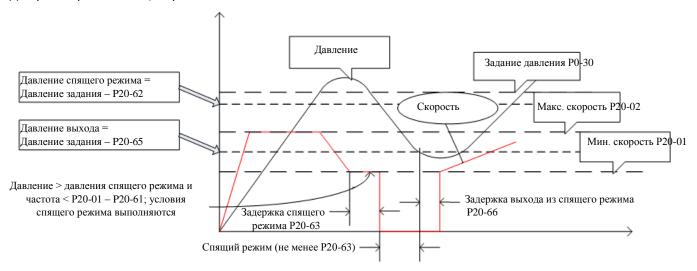
Если выходная частота меньше P20-01 + P20-61, то условие по частоте выполнено.

Пара-	' Наименование параметра	Настройки параметра	Ед.	Заводское
метр			изм.	значение
P20-62	Давление входа в спящий режим	0,00100,00	%	2

Если обратная связь по давлению больше, чем Задание - Р20-62, то условие по давлению выполнено.

Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр	гр		изм.	значение
P20-63	Задержка входа в спящий режим	0,00300,00	С	10

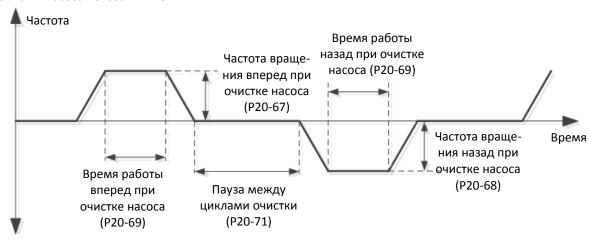
Если условия по частоте и по давлению выполняются в течение времени Р20-63, то преобразователь переходит в режим сна.


Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр	паименование параметра	пастройки параметра	изм.	значение
P20-64	Минимальная длительность спящего режима	0,001800,00	С	300

Если преобразователь перешел в режим сна, то он будет оставаться в нём по крайней мере в течение времени Р20-64.

Пара-	ра- Наименование параметра Настройки парам	Настройки параметра	Ед.	Заводское
метр	Паименование параметра	пастройки параметра	изм.	значение
P20-65	Давление выхода из спящего режима	0,00100,00	%	10
P20-66	Задержка выхода из спящего режима	0,060,0	С	1

Если обратная связь по давлению меньше, чем Задание - Р20-65 в течение Р20-66, то преобразователь начнет работу.

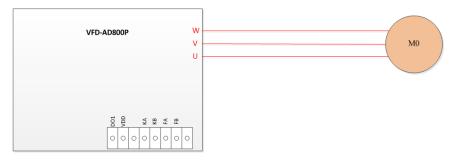

Диаграмма работы спящего режима:

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P20-67	Частота вращения вперед при очистке насоса	0.00~100.00	%	90.00
P20-68	Частота вращения назад при очистке насоса	0.00~100.00	%	60.00
P20-69	Время работы вперед при очистке насоса	1.0~1000.0	сек	5.0
P20-70	Время работы назад при очистке насоса	1.0~1000.0	сек	5.0
P20-71	Пауза между вращением вперед и назад при очистке насоса	1.0~1000.0	сек	1.0
P20-72	Количество циклов очистки насоса	1~100		1
P20-91	Оставшееся количество циклов очистки насоса	0~100		_

Параметры Р20-67 – Р20-72 определяют параметры функции очистки насоса.

Процесс очистки насоса показан ниже:

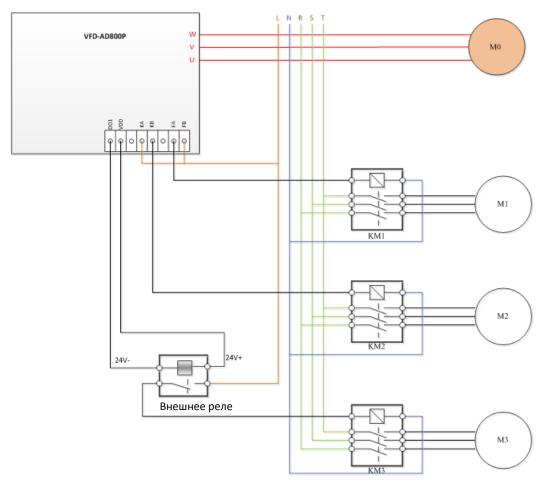
Для сигнала очистки насоса можно использовать любой дискретный вход, кроме FWD; этому входу необходимо назначить функцию 65: Очистка насоса. По окончании процедуры очистки ее можно повторить, отключив и вновь подав сигнал на этот вход. Функция очистки насоса не работает при P20-73 Режим работы каскада насосов = 1: С постоянным ведущим или при P20-40 Работа в каскадном режиме по сети = 1: Включена. Время разгона определяется параметром P0-60, время замедления — P0-61.


Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P20-73	Режим работы группы насосов	0: нет 1: С постоянным ведущим 2: С переменным ведущим		0
P20-74	Частота добавления насоса	P20-76~100.00	%	100.00
P20-75	Отклонение давления для добавления насоса	0.00~30.00	%	10.00
P20-76	Частота отключения одного насоса	0.00~P20-74	%	40.00
P20-77	Отклонение давления для отключения насоса	-10.00~30.00	%	10.00

Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское
метр		and the second second	изм.	значение
P20-78	Задержка добавления или отключения насоса	0~3600	сек	5
P20-79	Время включения контактора	0.1~9.9	сек	0.5
P20-80	Время выключения контактора	0.1~9.9	сек	0.5
P20-81	Количество насосов	1~8		1
P20-82	Выбор неиспользуемых насосов	0~255		0
P20-83	Задержка принудительной смены насоса	0.0~240.0	Ч	0.0

Эти параметры используются для настройки каскадного управления группой насосов.

2.4.13.1. Управление одним насосом (Р20-73=0):


Схема подключения:

Это режим управления одним насосом, поэтому нет необходимости работать с дополнительными насосами, соответственно эти параметры не используются.

2.4.13.2. Каскад с постоянным ведущим (Р20-73=1):

В этом режиме преобразователь может управлять группой до 7 дополнительных насосов (количество ограничено модулем CUOP, который имеет только 2 реле и 5 дискретных выходов) для обеспечения большего диапазона расхода или давления. Пример схемы подключения:

Преобразователь управляет ведущим насосом (М0), остальные насосы подключаются к сети при помощи контакторов, управляемых преобразователем.

Добавление насоса

Когда выходная частота преобразователя достигнет или превысит значение P20-74 (Частота добавления насоса), и давление обратной связи будет ниже заданного на величину P20-75 (Отклонение давления для добавления насоса), преобразователь запустит дополнительный насос с задержкой P20-78 (Задержка добавления или отключения насоса). Подключаемый насос выбирается по его порядковому номеру (от меньшего к большему). Например:

KM1	KM2	KM3	M1	M2	M3
Замкнут	Замкнут	Замкнут	Подключен к сети	Подключен к сети	Подключен к сети
Разомкнут	Замкнут	Замкнут	Остановлен	Подключен к сети	Подключен к сети
Разомкнут	Разомкнут	Замкнут	Остановлен	Остановлен	Подключен к сети
Разомкнут	Разомкнут	Разомкнут	Остановлен	Остановлен	Остановлен

При подключении насоса преобразователь сначала снижает частоту на ведущем насосе до P20-76 (Частота отключения одного насоса), затем контактором подключает насос к сети, и затем продолжает процесс регулирования.

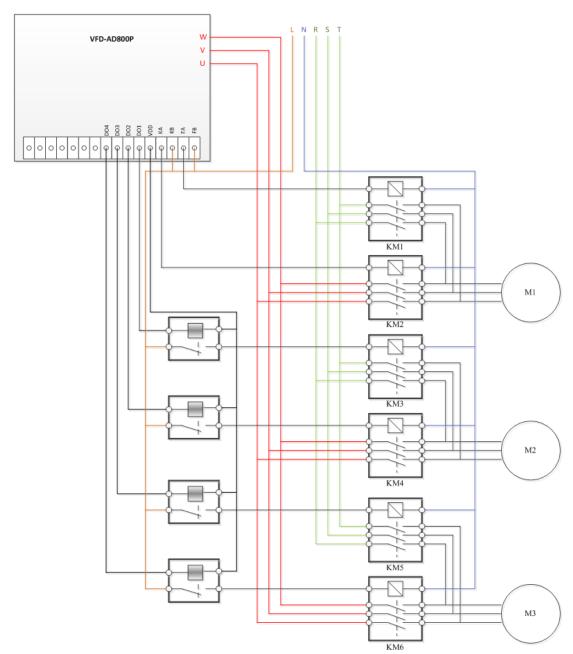
Отключение насоса

Когда выходная частота преобразователя снизится до значения P20-76 (Частота отключения одного насоса), и давление превысит задание на величину P20-77 (Отклонение давления для отключения насоса), преобразователь отключит один из дополнительных насосов с задержкой P20-78 (Задержка добавления или отключения насоса). Отключаемый насос выбирается по его порядковому номеру (от меньшего к большему). Например:

KM1	KM2	KM3	M1	M2	M3
Разомкнут	Разомкнут	Разомкнут	Остановлен	Остановлен	Остановлен
Замкнут	Разомкнут	Разомкнут	Подключен к сети	Остановлен	Остановлен
Замкнут	Замкнут	Разомкнут	Подключен к сети	Подключен к сети	Остановлен
Замкнут	Замкнут	Замкнут	Подключен к сети	Подключен к сети	Подключен к сети

При отключении насоса преобразователь сначала контактором отключает насос от сети, затем разгоняет ведущий насос до P20-74 (Частота добавления насоса), и затем продолжает процесс регулирования.

<u>Чередование</u>


Функция чередования предупреждает коррозию насосов при длительном простое. Если все дополнительные насосы работают или остановлены, функция неактивна. Если Р20-83=0.00, функция также неактивна.

Если дополнительные насосы не включаются и не отключаются в течение времени Р20-83 (Задержка принудительной смены насоса), происходит автоматическая смена одного из дополнительных насосов.

2.4.13.3. Каскад с переменным ведущим (Р20-73=2):

В этом режиме преобразователь может управлять группой до 3 насосов (количество ограничено модулем СU0Р, который имеет только 2 реле и 5 дискретных выходов) для обеспечения большего диапазона расхода или давления. Пример схемы подключения для трех насосов:

www.optimusdrive.ru +7 495 280 19 42

Преобразователь управляет одним из трех двигателей, остальные при необходимости подключаются к сети по команде от преобразователя.

Добавление насоса

Когда выходная частота преобразователя достигнет или превысит значение P20-74 (Частота добавления насоса), и давление обратной связи будет ниже заданного на величину P20-75 (Отклонение давления для добавления насоса), преобразователь запустит дополнительный насос с задержкой P20-78 (Задержка добавления или отключения насоса). Подключаемый насос выбирается по его порядковому номеру (от меньшего к большему). Например, последовательное включение насосов от M1 до M3:

KM1	KM2	KM3	KM4	KM5	KM6	M1	M2	M3
Разомкнут	Разомкнут	Разомкнут	Разомкнут	Разомкнут	Разомкнут	Остановлен	Остановлен	Остановлен
Разомкнут	Замкнут	Разомкнут	Разомкнут	Разомкнут	Разомкнут	Подключен к ПЧ	Остановлен	Остановлен
Разомкнут	Разомкнут	Разомкнут	Разомкнут	Разомкнут	Разомкнут	Остановлен	Остановлен	Остановлен
Разомкнут	Разомкнут	Разомкнут	Замкнут	Разомкнут	Разомкнут	Остановлен	Подключен к ПЧ	Остановлен
Замкнут	Разомкнут	Разомкнут	Замкнут	Разомкнут	Разомкнут	Подключен к сети	Подключен к ПЧ	Остановлен
Замкнут	Разомкнут	Разомкнут	Разомкнут	Разомкнут	Разомкнут	Подключен к сети	Остановлен	Остановлен
Замкнут	Разомкнут	Разомкнут	Разомкнут	Разомкнут	Замкнут	Подключен к сети	Остановлен	Подключен к ПЧ
Замкнут	Разомкнут	Замкнут	Разомкнут	Разомкнут	Замкнут	Подключен к сети	Подключен к сети	Подключен к ПЧ

Процесс добавления насоса (на примере М2):

- Преобразователь останавливает насос М1 выбегом и отключает КМ2
- Через время Р20-80 замыкается КМ4
- Через время P20-79 замыкается контактор КМ1, и преобразователь запускает насос М2.

Отключение насоса

Когда выходная частота преобразователя снизится до значения P20-76 (Частота отключения одного насоса), и давление превысит задание на величину P20-77 (Отклонение давления для отключения насоса), преобразователь отключит один из дополнительных насосов с задержкой P20-78 (Задержка добавления или отключения насоса). Отключаемый насос выбирается по его порядковому номеру (от меньшего к большему).

Например, последовательное отключение насосов от M1 до M3:

KM1	KM2	KM3	KM4	KM5	KM6	M1	M2	M3
Замкнут	Разомкнут	Замкнут	Разомкнут	Разомкнут	Замкнут	Подключен к сети	Подключен к сети	Подключен к ПЧ
Разомкнут	Разомкнут	Замкнут	Разомкнут	Разомкнут	Замкнут	Остановлен	Подключен к сети	Подключен к ПЧ
Разомкнут	Разомкнут	Разомкнут	Разомкнут	Разомкнут	Замкнут	Остановлен	Остановлен	Подключен к ПЧ
Разомкнут	Разомкнут	Разомкнут	Разомкнут	Разомкнут	Разомкнут	Остановлен	Остановлен	Остановлен

Процесс отключения насоса (на примере M1): отключение контактора KM1, разгон ведущего до P20-74 (Частота добавления насоса), продолжение процесса регулирования.

Чередование

Функция чередования предупреждает коррозию насосов при длительном простое. Если все насосы работают, функция неактивна. Если Р20-83=0.00, функция также неактивна.

Если количество работающих насосов не меняется в течение времени P20-83 (Задержка принудительной смены насоса), происходит автоматическая смена одного из работающих насосов на свободный.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P20-84	Сброс времени наработки	0: Нет х: Сброс времени наработки насоса х (х=1~8). 10: Сброс времени наработки всех насосов.		0

Этот параметр используется для сброса времени наработки конкретного насоса.

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P20-92	Время наработки насоса 1	0~65535	Ч	
P20-93	Время наработки насоса 2	0~65535	Ч	
P20-94	Время наработки насоса 3	0~65535	Ч	
P20-95	Время наработки насоса 4	0~65535	Ч	
P20-96	Время наработки насоса 5	0~65535	Ч	
P20-97	Время наработки насоса 6	0~65535	ч	
P20-98	Время наработки насоса 7	0~65535	Ч	
P20-99	Время наработки насоса 8	0~65535	Ч	

2.5. Обработка неисправностей: Предупреждение, Авария и Ошибка

2.5.1. Коды неисправностей

ПЧ серии AD800P классифицирует диагностические сообщения по 3 категориям: <u>Предупреждение</u>, <u>Авария</u> и <u>Ошибка</u>, и они отображаются на дисплее пульта в виде кодов.

Предупреждение относится к сбоям, близким по значениям к допустимым пределам и пределам значений параметров, но при которых ПЧ может продолжать работать с заданными характеристиками управления, либо может автоматически вернуться к работе после пропадания причины неисправности. Информация о предупреждении может быть выведена на дисплей пульта или считана по шине связи. На дисплее пульта предупреждение будет отображаться как «u.XX». «U» означает предупреждение, «XX» представляет код предупреждения. На ЖК-дисплее информация о предупреждении будет отображаться обычным текстом.

Авария обозначает неисправности, которые могут привести к повреждению ПЧ или другого оборудования в течение короткого времени, поэтому ПЧ должен быть немедленно остановлен. Когда выдан аварийный сигнал, его сброс может быть принудительным и осуществляется командой с пульта или по последовательной связи, только после этого ПЧ сможет снова работать. На дисплее пульта аварийный сигнал будет отображаться как «А.ХХ». «А» означает аварию, «ХХ» представляет код аварии. На ЖК-дисплее информация о аварии будет отображаться обычным текстом. Для устранения некоторых аварий необходимо отключить ПЧ и выполнить отладку или тестирование элементов и цепей. Для неисправностей этого типа ПЧ серии AD800P реализуют функцию блокировки при возникновении неисправности.

Блокированный аварийный сигнал не может быть сброшен до тех пор, пока не произойдет цикл выключения включения питания и не будет устранена причина неисправности. Этот тип неисправностей называется заблокированной неисправностью. Все заблокированные неисправности всегда будут рассматриваться как авария. Функцию блокировки можно отключить, установив параметр P5-30 = 0. При этом пользователь должен отдавать себе отчет об опасности подобных действий.

Несмотря на наличие разнообразных защит, неправильная эксплуатация ПЧ может привести к выходу его из строя. Наиболее частой причиной выхода ПЧ из строя при неправильной эксплуатации являются частые повторные пуски при срабатывании защит, связанных с перегрузками (например: A.16, A.37, A.45 и т.п.). Повторный пуск после таких аварий допускается только после выявления и устранения причин аварии, и не ранее чем через 10 минут. Нарушение данного требования может служить причиной отказа в гарантийном обслуживании.

<u>Ошибка</u> связана с неправильными действиями пользователя, например, попытка изменить значение параметра с пульта, которое изменить нельзя. Ошибка отображается на дисплее пульта как «Er.XX». ПЧ при этом продолжит работу, и ошибка не будет зарегистрирована в журнале.

Ниже приведен список диагностических сообщений.

Преду- преж- дение	Ава- рия	Ошиб- ка	Наименование	Причина	Устранение
Д	A.01		Сброс на заводские значения	Параметры сброшены на заводские значения без подтверждения	Нажмите кнопку «СТОП» для под- тверждения
	A.02*		Внутренняя ошибка		Обратитесь к поставщику
u.03	A.03*		Превышение паузы связи силового модуля (PU) и модуля управления (ПЧ)	PU не может связаться с ПЧ	1.Выключите питание и проверьте соединение между PU и ПЧ 2. Обратитесь к поставщику
	A.04*		Ошибка платы питания 24 В	Внутренняя аппаратная ошибка	1. Проверьте внешнюю нагрузку на
	A.05*		Ошибка управления напря- жением IGBT	Внутренняя аппаратная ошибка	питании 24 В 2. Обратитесь к поставщику
u.07	A.07*		Неисправность вентилятора	Загрязнение вентилятора или он выработал ресурс	Почистите или замените вентилятор
u.08			Неисправность вентилятора 2	Загрязнение вентилятора или он выработал ресурс	Почистите или замените вентилятор
	A.16*		Короткое замыкание	КЗ между фазами двигателя	Проверьте моторный кабель и состояние изоляции двигателя
u.17	A.17*		Неправильное заземление	Пробой или короткое замыкание между выходными фазами и заземлением	Проверьте моторный кабель на К3 с заземлением. Замените кабель или двигатель
u.19	A.19*		Короткое замыкание тормоз- ного резистора	КЗ тормозного резистора (22 кВт и ниже)	Проверьте подключение тормозного резистора или замените его
u.20	A.20*		Короткое замыкание тормоз- ного транзистора	Тормозной транзистор вышел из строя (22 кВт и ниже)	Обратитесь к поставщику
u.21	A.21*		Отсутствие торможения	Тормозной резистор не подключен или не работает	Проверьте тормозной резистор или замените на подходящий
u.23	A.23		Слишком большой ток при низком напряжении	Перегрузка по току из-за того, что напряжение питания слишком сильно падает	Проверьте источник питания
u.24			Падение напряжения	Слишком сильное падение напряжения питания или высокая нагрузка при слишком низком напряжении питания	Проверьте источник питания
u.25	A.25		Перегрузка при низком напряжении	Высокая нагрузка при постоянном низком напряжении питания	Проверьте источник питания
u.26	A.26*		Потеря фазы питания	Потеря фазы питания	Проверьте источник питания
u.27	A.27		Ошибка рекуперации	Функция рекуперации сработала, но не смогла удержать напряжение постоянного тока при падении напряжения питания, из-за слишком низкой инерции или двух длительных периодов падения напряжения питания	1.Проверьте источник питания 2. Установите подходящее пороговое напряжение рекуперации
	A.28*		Потеря фазы U двигателя	1. Фазовый дисбаланс двигателя	Пасата на
	A.29*		Потеря фазы V двигателя	2. Ослабло соединение моторного	Проверьте моторный кабель и двига-
	A.30*		Потеря фазы W двигателя	кабеля	тель
u.36	A.36		Перенапряжение	1. Слишком высокое напряжение питания; 2. Двигатель работает в генераторном режиме; 3. Слишком мало время замедления; 4. Не установлены тормозные модуль и резистор.	Проверьте источник питания Используйте тормозной резистор или внешний рекуператор для потребления генерируемой энергии Измените параметры так, чтобы двигатель не работал в генераторном режиме

Преду- преж- дение	Ава- рия	Ошиб- ка	Наименование	Причина	Устранение
u.37	A.37		Перегрев IGBT	Слишком высокая нагрузка или недо- статочное охлаждение	1. Проверьте нагрузку 2. Проверьте охлаждение, почистите или замените вентилятор
u.38	A.38		Ошибка термодатчика U IGBT		·
u.39	A.39		Ошибка термодатчика V IGBT		Обратитесь к поставщику
u.40 u.41	A.40 A.41		Ошибка термодатчика W IGBT Перегрев платы выпрямителя	Слишком высокая нагрузка или недо- статочное охлаждение	1. Проверьте нагрузку 2. Проверьте охлаждение, почистите или замените вентилятор
u.42	A.42		Ошибка термодатчика вы- прямителя		Обратитесь к поставщику
u.43	A.43		Перегрев силовой платы	Слишком высокая нагрузка или недостаточное охлаждение	1. Проверьте нагрузку 2. Проверьте охлаждение, почистите или замените вентилятор
u.45	A.45		Перегрузка по току	Параметры двигателя и/или параметры управления заданы неправильно Мощность ПЧ недостаточна для двигателя или нагрузки Слишком низкое напряжение питания; ПЧ не смог совершить подхват двигателя	1.Отредактируйте параметры 2.Выберите ПЧ большей мощности 3.Проверьте источник питания 4.Обратитесь к поставщику
u.46	A.46		Перегрузка ПЧ	Слишком большая нагрузка или низкое напряжение питания Мощность ПЧ недостаточна для двигателя или нагрузки Параметры двигателя и/или параметры управления заданы неправильно	1.Отредактируйте параметры 2.Выберите ПЧ большей мощности 3.Обратитесь к поставщику
u.48	A.48		Перегрев двигателя	1. Большая нагрузка на двигатель 2. Недостаточное охлаждение 3. Термистор двигателя работает некорректно	1.Проверьте тип и правильность установки термистора 2.Обеспечьте достаточное охлаждение двигателя 3. Проверьте соответствие нагрузки мощности двигателя
u.49	A.49		Перегрузка двигателя	1. Параметры двигателя и/или пара- метры управления заданы непра- вильно; 2. Большая нагрузка на двигатель	Отредактируйте параметры Выберите двигатель большей мощности Проверьте соответствие нагрузки мощности двигателя
u.50	A.50		Превышение токоограниче- ния	Ток превышает установленный параметром макс. ток (P5-07): 1. Слишком большая нагрузка по сравнению с мощностью ПЧ 2. Слишком быстрое время разгона при инерционной нагрузке 3. Слишком низкое напряжение питания 4. Параметры двигателя и / или параметры управления установлены неправильно	Отредактируйте параметр Р5-07 или см. решения по аварии А.45
u.51	A.51		Превышение ограничения момента	Момент превышает значение пара- метров P5-04/P5-05.	Отредактируйте параметры P5-04/P5- 05 или см. решения по аварии A.45
u.57	A.57		Ошибка аналогового входа	1. Ошибка подключения 2. Параметры для Al1/Al2 заданы некорректно	1. Проверьте подключения 2. Проверьте правильность задания параметров
u.61	A.61		Потеря сигнала от энкодера	Сигнал от энкодера некорректен или отсутствует	Проверьте подключение энкодера и настройки платы энкодера
u.62	A.62		Превышение времени ожи- дания при связи по RS485	Превышение времени ожидания при связи ПЧ с внешним устройством ПК/ПЛК/ Панель оператора и т. д. 1. Неисправность внешнего устройства 2. Неправильное подключение линии связи 3. Параметры связи (РО-8X) заданы некорректно. 4. Электромагнитные помехи	1. Проверьте внешнее устройство. 2. Проверьте подключение кобеля связи 3. Корректно задайте параметры связи (РО-8X) 4. Проверьте экранирование и заземлите кабеля связи 5. Обратитесь к поставщику

<u>www.optimusdrive.ru</u> +7 495 280 19 42

Преду- преж- дение	Ава- рия	Ошиб- ка	Наименование Причина		Устранение	
u.63	A.63		Тайм-аут передачи слова управления по опциональной плате связи	1. Некорректная работа хост- контроллера 2. Неправильное подключение 3. Неправильная настройка парамет- ров связи 4. Электромагнитные помехи	1. Проверьте программу хост- контроллера 2. Проверьте кабель связи 3. Проверьте параметры связи 4. Используйте экранированный кабель	
u.66			Потеря нагрузки; Потеря связи с двигателем	Проблема подключения двигателя или неисправность двигателя	Проверьте моторный кабель и двига- тель	
	A.69		Низкий ток при механиче- ском торможении	Фактический ток двигателя пре- вышает ток отпускания тормоза (Р1-97 ~ Р1-98) в течение времени задержки пуска	Отредактируйте параметры меха- нического тормоза (P1-97~P1-98)	
u.75			Истек срок лицензии файла прошивки ПЧ	Истек срок лицензии файла прошив- ки ПЧ	Обратитесь к поставщику	
u.76	A.76		Внешний аварийный сигнал	На дискретном входе сигнал внешней аварии	Проверьте источник аварийного сиг- нала	
		Er.90	Превышение времени ожидания связи силового модуля (PU) и модуля управления (ПЧ)	Ошибка соединения ПЧ и PU	1.Отключите питание, проверьте соединение между PU и ПЧ 2.Обратитесь к поставщику	
		Er.93	Запрет изменения парамет- ров	Пульт заблокирован. Вводимое значение не поддерживается.	 Пульт заблокирован. Установите допустимое значение. 	
	l Err		Запрет изменения парамет- ров	Редактирование этого параметра во время работы ПЧ невозможно.	Остановите ПЧ	
	A.99		Ошибка автонастройки дви- гателя	Не удалось завершить автонастройку параметров двигателя	Правильно настройте параметры двигателя в соответствии с его шильдиком	
	A.160		Сухой ход	1. Недостаточно воды. 2. Неправильно подключен датчик давления. 3. Неправильная установка Р20-28~Р20-30	1. Убедитесь в наличии воды. 2. Проверьте подключение датчика. 3. Установите значения P20-28~P20- 30 в соответствии с условиями.	
u.161	A.161		Потеря обратной связи ПИД- регулятора	1. Неправильно подключен датчик давления. 2. Неправильная установка Р20- 07~Р20-08	1. Проверьте подключение датчика. 3. Установите значения Р20-07~Р20- 08 в соответствии с условиями.	
	A.162		Повышенное давление	1. Некорректный сигнал датчика давления. 2. Слишком мало значение Р20-03 (Верхнее ограничение давления).	1. Проверьте подключение датчика. 2. Настройте P20-03 в соответствии с условиями.	
	A.163		Пониженное давление	Неправильно подключен датчик давления. Неправильная установка Р20-04~Р20-05.	1. Проверьте подключение датчика. 2. Установите значения P20-04~P20- 05 в соответствии с условиями.	
	A.164		Порыв трубы	1. Порыв трубы. 2. Неправильная установка Р20-58~ Р20-59.	1. Убедитесь в отсутствии всасывания воздуха через всасывающий коллектор. 2. Установите значения P20-58~P20-59 в соответствии с условиями.	
u.165			Обрыв сети связи	1. Неверное подключение кабеля связи. 2. Неправильная установка Р20-40~ Р20-41 (Ведущий).	1. Проверьте подключения кабеля связи RS485. 2. Установите правильные значения P20-40~P20-41 (Ведущий).	
	A.166		Ошибка связи	1. Более одного ПЧ стали резервными ведущими (P20-42=1).	1. Убедитесь, что только на одном ведомом установлено P20-42=1.	

Примечание: Аварийные сигналы, отмеченные знаком '*' являются блокированными.

2.6. Техническое обслуживание

На элементы ПЧ может воздействовать температура окружающей среды, влажность, вибрация, соляной туман, пыль и т. д. Надлежащее техническое обслуживание ПЧ во время хранения и эксплуатации необходимо для предотвращения выхода ПЧ из строя и сокращения срока его службы.

2.6.1. Регулярный осмотр

В ходе регулярного осмотра проводятся следующие мероприятия: Наличие посторонних звуков во время работы двигателя; Наличие сильной вибрации во время работы двигателя; Наличие значительных изменений в условиях эксплуатации;

Правильность работы вентиляторов охлаждения;

Проверка температуры элементов внутри ПЧ с помощью соответствующих параметров группы 9;

Проверка напряжения, тока и рабочей частоты двигателя;

Наличие пыли, металлической стружки, едких жидкостей и следов масел.

2.6.2. Техническое обслуживание

Приведенные ниже мероприятия должны проводиться регулярно, один раз в 3~6 месяцев, что может помочь обнаружить скрытые неисправности и предотвратить их:

Мероприятие технического обслуживания	Действия по устранению
Проверка затяжки клемм управления	Затяните винты с помощью отвертки с регулировкой крутящего мо- мента, если они ослаблены
Проверка затяжки силовых клемм	Затяните винты с помощью отвертки или ключа с регулируемым крутящим моментом, если они ослаблены
Проверка затяжки клемм заземления	Затяните винты с помощью отвертки или ключа с регулируемым крутящим моментом, если они ослаблены
Ослабление крепления ПЧ	Затяните винты с помощью отвертки или ключа с регулируемым крутящим моментом, если они ослаблены
Целостность силовых кабелей и кабелей управления	Замените провода и кабели
Проверка блокировки воздуховодов	Очистите воздуховоды
Проверка скорости работы вентилятора	Очистите или замените вентилятор

Внимание:

Отключите питание ПЧ и подождите достаточное время (после погасания дисплея для приборов до 22 кВт включительно – 4 минуты, для приборов от 30 кВт и выше – 15 минут), чтобы обеспечить безопасность перед техническим обслуживанием;

При проведении работ старайтесь не ронять какие-либо винты, кусочки проволоки и другие металлические элементы внутрь ПЧ, иначе преобразователь может быть поврежден при включении питания; Запрещается вносить какие-либо изменения в конструкцию ПЧ.

2.6.3. Компоненты, подверженные износу и старению

Износу и старению подвержены охлаждающий вентилятор, конденсаторы цепи постоянного тока и реле. Срок службы зависит от условий работы и окружающей среды. Щадящие условия окружающей среды и правильное обслуживание (низкая окружающая температура, своевременная очистка путей охлаждающего воздуха в шкафу и в преобразователе, регулярная проверка и очистка вентиляторов и т.д.) могут существенно продлить срок службы. Ниже приведена информация по проверке таких компонентов. По возможности заменяйте изнашиваемые и стареющие детали при появлении необычных сбоев в работе во избежание дальнейших проблем.

Компонент Срок службы		Причина выхода из строя	Способ диагностики	
Охлаждающий вен- тилятор	4-5 лет	Износ подшипников, старение лопастей, за- грязнение	Осмотр (отсутствие дефектов на лопастях, нормальная скорость), отсутствие посторонних шумов при работе	
Алюминиевые электролитические конденсаторы	4-5 лет	Высокая температура, низкое напряжение сети, высокая нагрузка	Проверка емкости, проверка изоляции, осмотр (отсутствие потеков жидкости, деформаций, состояние клапанов)	
Реле и контакторы	50-100 тыс. включений	Частые переключения, грязь, агрессивная среда	Измерение сопротивления между контакта- ми в замкнутом и разомкнутом состоянии	

2.6.4. Хранение и транспортировка

Хранение ПЧ до установки должно производиться в заводской упаковке. Условия хранения и транспортировки:

Отсутствие воздействия влаги и пыли;

Температура хранения: -30~65°C;

Влажность: 5-95% без конденсата;

Отсутствие воздействия агрессивных газов и жидкостей;

Хранение на стеллаже без контакта с землей;

Температура при транспортировке: -30~70°C;

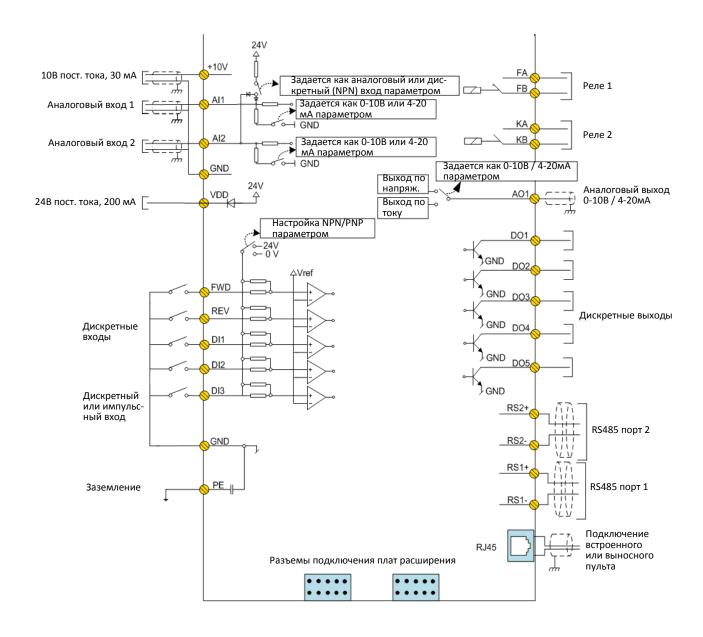
Влажность при транспортировке: менее 95%

Внимание: Не рекомендуется хранить ПЧ в течение длительного времени из-за наличия электролитических конденсаторов внутри. Если необходимо хранить ПЧ в течение длительного времени, следуйте приведенным ниже правилам: Подавайте питание на ПЧ каждые 12 месяцев не менее 5 часов по специальной методике.

Включите ПЧ перед первым запуском по специальной методике.

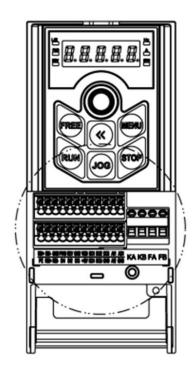
Специальный способ питания ПЧ означает медленное увеличение напряжения, обычно с помощью регулятора напряжения. Подача питания на ПЧ непосредственно с высоким напряжением после длительного хранения может привести к взрыву электролитических конденсаторов.

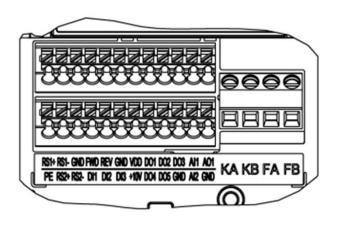
2.6.5. Утилизация


Материалы, используемые в конструкции ПЧ, подлежат вторичной переработке в целях экономии ресурсов и защиты окружающей среды. Например, материал упаковки является биоразлагаемым и пригодным для вторичной переработки. Все металлические части также могут быть переработаны, пластик и резина тоже имеют методики переработки. Утилизация печатных плат и электролитических конденсаторов должна соответствовать стандарту IEC62635. Все операции по утилизации ПЧ также должны соответствовать местному законодательству.

Глава 3. Настройка входов и выходов преобразователей AD800P

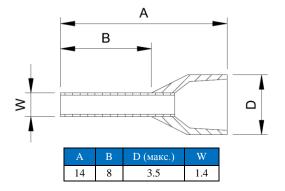
3.1. Монтаж и электрические соединения


3.1.1. Электрическая схема


Схема слаботочных электрических соединений преобразователя AD800P приведена ниже.

3.1.2. Клеммы

3.1.2.1. Описание клемм:


Спецификация клемм:

Обозначение	Функция	Характеристики
		Тип входов: NPN / PNP
FWD, REV, DI1,	Писироти на вусти	Входное напряжение: 0~30 В;
DI2, DI3	Дискретные входы	Входное сопротивление: 3.6 кΩ;
		DI3 может быть сконфигурирован как импульсный вход
		Частота: 0.00~100.00 кГц;
DI3	Импульсный вход	Питание: 24 B ± 20%;
		Рабочий цикл: 40%~60%;
DO1, DO2, DO3,	Дискретные выхо-	Тип выхода: Открытый коллектор;
DO4, DO5	ды	Ток: 0~40 мА; Напряжение: 0~30В;
		Может быть сконфигурирован как импульсный выход:
DO1	Импульсный вы-	Нагрузка: Резистивная>1 кΩ, емкостная <10 нФ;
001	ход	Частота: 0.00~100.00 кГц;
		Рабочий цикл: 40%~60%;
	Порт последова-	Макс. скорость обмена данными: 38400 бит/с;
RS1+, RS1-	тельной связи	Подключаемый терминальный резистор, по умолчанию отключен
	RS485	подключаемый терминальный резистор, по умолчанию отключен
	Порт последова-	Только для каскадного режима
RS2+, RS2-	тельной связи	Скорость обмена данными: 9600 бит/с;
	RS485	скорость оомена данными. 5000 оттус,
FA-FB (Реле 1)	Релейные выходы	Резистивная нагрузка: 250 В АС 3А / 30 В DC 3А;
КА-КВ (Реле 2)	(HO)	Индуктивная нагрузка: 250 в АС 0.2А / 24 В DC 0.1А (cosф=0.4);

Обозначение	Функция	Характеристики		
Аl1, Al2 Аналоговые входы		АІ1 и АІ2 настраиваются как аналоговые входы по напряжению или току, а также как дискретные входы. 1. Аналоговые входы по напряжению: Входное сопротивление: 10 кΩ; Входной диапазон напряжения: 0~10 В; 2. Аналоговые входы по току: Входное сопротивление: ≤500 Ω; Входной ток: 0~20 мА 3. Дискретные входы: Тип входов: NPN / PNP Входное напряжение: 0~30 В; Входное сопротивление: 10 кΩ;		
AO1	Аналоговый выход	Настраивается как выход по току или напряжению Выходной диапазон: 0~10 В или 0~20 мА; Нагрузка: Выход по напряжению: Сопротивление > 500Ω; Выход по току: Сопротивление < 500Ω;		
VDD	Источник питания 24 В	Макс. 200 мА		
+10V	Источник питания 10 В	Макс. 30 мА		
GND Общий провод клем		м управления		
РЕ Заземление				
Другие разъемы	:			
Разъемы плат ра	сширения	Разъемы на две платы в нижней части модуля управления		
Разъем внешнего	о пульта управления	RJ45 под встроенным пультом управления		

3.1.2.2. Подключение проводов

Клеммы пружинного типа используются для всех управляющих сигналов, за исключением релейных выходов. Для клемм пружинного типа рекомендуются кабельные наконечники со следующими размерами:

Ед.изм.: мм

Сечение проводов:

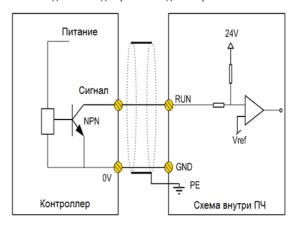
Тип	Минимальное сечение		Рекомендуемое сечение		Максимальное сечение	
	MM ²	AWG	MM ²	AWG	MM ²	AWG
Одиночный провод	0,3 mm ²	22	0,5 mm ²	20	1,0 mm ²	16
Многожильный провод	0,3 mm ²	22	0,5 mm ²	20	1,0 mm ²	16
Клеммный наконечник	0,3 mm ²	22	0,5 mm ²	20	0,75 mm ²	16

Вставьте провод с наконечником в клемму, и он будет автоматически зажат пружиной клеммы;

Чтобы извлечь провод, нажмите на фиксатор клеммы шлицевой отверткой толщиной 0,4 мм и 2,5 мм;

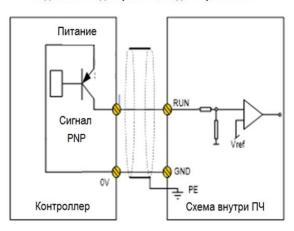
Оптимальная длина зачистки проводов составляет 9 мм;

Для релейных выходов используются клеммы с винтовым креплением. Для фиксации проводов используется шлицевая отвертка шириной 3,5 мм и толщиной 0,6 мм;


Оптимальная длина зачистки проводов составляет 6 ~ 7 мм;

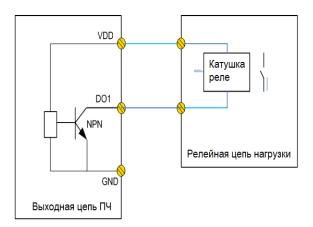
Сечение проводов: $0,4 \sim 1,0 \text{ мм}^2$, момент затяжки: 0,4 H*m.

3.1.2.3. Электрическое подключение дискретных входов


Дискретные входы преобразователя AD800P поддерживают режимы NPN и PNP. Режим NPN:

Подключение дискретных входов DI в режиме NPN

Режим PNP:


Подключение дискретных входов в режиме PNP

3.1.2.4. Электрическое подключение дискретных выходов

Схема подключения к релейной нагрузке:

Схема подключения дискретного выхода

3.2. Работа с пультом управления

Встроенный в преобразователь пульт может использоваться для установки/считывания параметров, управления, мониторинга и т. д. Ниже показан внешний вид пульта управления.

Дискретный потенциометр имеет три функции – уменьшение значения, увеличение значения, подтверждение значения.

• Описание индикаторов на пульте управления:

Индикатор *Упр*: индикация режима работы: Горит --- удаленный режим, мигает --- локальный режим. Индикаторы ВПР, НЗД:

ВПР (вперед)	НЗД (назад)	Состояние ПЧ
Включен	Выключен	Работа в направлении вперед
Выключен	Включен	Работа в направлении назад
Выключен	Выключен	Останов

Индикаторы Гц, А, об/м: индикация единиц отображаемой переменной, см. Раздел 3.2.2.

- Дисплей: 5 светодиодных 7-сегментных индикаторов для отображения заданного значения, выходной частоты и рабочих характеристик, предупреждающих и аварийных сигналов и т. д.
- Кнопки пульта управления:

Кнопка	Функция
	На главном экране (режим мониторинга) нажатие переключает отображаемые переменные; при выборе
<<	номера параметра переключает разряд номера параметра, который нужно изменить; при изменении
	значения параметра переключает разряд значения параметра, подлежащего изменению
СТОП	Останавливает двигатель в локальном режиме и сбрасывает ошибку/аварию (если есть).
МЕНЮ	Нажатие позволяет войти в меню редактирования параметров или выйти в главное меню
ПУСК	Запускает двигатель в локальном режиме
толч.	Запускает толчковый режим для управления скоростью, работает только в локальном режиме.
своб.	Пользовательская функция (в разработке)
	Вращение по часовой стрелке осуществляет увеличение числового значения параметра или номера па-
A Comment	раметра
(())	Вращение против часовой стрелки осуществляет уменьшение числового значения параметра или номе-
No. of the last of	ра параметра
	Нажатие осуществляет подтверждение выбора номера параметра и ввода отображения/изменения зна-
	чения параметра, или подтверждение значения параметра и возврат в меню выбора номера параметра

3.2.1. Установка параметра

Пример:

- 1) Изменение параметра Р1-06, номинальный ток двигателя изменяем на значение 9,6 А:
- 2) Из основного режима мониторинга нажатием кнопки *МЕНЮ* переходим к выбору номера редактируемого параметра.
- 3) Нажатием кнопки "<<" выбираем необходимые разряды номера параметра и потенциометром устанавливаем параметр P1-06.
- 4) Нажатием на потенциометр подтверждаем выбор номера параметра и переходим в режим его редактирования.

- 5) Нажатием кнопки "<<" выбираем необходимый разряд значения параметра Р1-06 и потенциометром устанавливаем значение параметра "9.6".
- 6) Нажатием на потенциометр подтверждаем заданное значение параметра и переходим в режим выбора номера параметра, на дисплее отобразится номер следующего параметра P1-07.
- 7) Повторяя шаги 3) 6), меняем значения других параметров.

Если не выполнять никаких действий на пульте, произойдет автоматический переход на начальный экран.

Нажатие кнопки МЕНЮ возвращает пульт к индикации начального экрана.

3.2.2. Мониторинг состояния ПЧ

При настройке по умолчанию дисплей пульта отображает поочередно пять переменных – частота двигателя, задание частоты, ток, выходное напряжение и напряжение цепи постоянного тока. Выбор отображаемой переменной осуществляется кнопкой «<<». Если на начальном экране необходимо отобразить больше или меньше переменных, необходимо изменить параметр P6-05. Частота двигателя, задание частоты и ток отображаются всегда.

Таблица показывает значения и способ их отображения для некоторых переменных, которые могут быть заданы в P6-05.

Характеристика	Параметр мониторинга	Отображаемый символ	Светодиодный индикатор
Выходная частота	P9-07	Т	"Гц" горит
Заданное значение	P9-02	нет	"Гц" горит "А" горит
Ток двигателя	P9-08	Α	"А" горит
Напряжение двигателя	P9-06	нет	"Гц" горит "об/м" горит
Скорость двигателя	P9-04	нет	"RPM" горит
Напряжение на шине постоянного тока	P9-11	нет	"А" горит "об/м" горит
Температура ПЧ	P9-13	нет	"об/м" мигает
Значение обратной связи	P9-20	нет	"Гц" горит "об/м" мигает
Состояние аналоговых входов	P9-24 P9-26	нет	"Гц" мигает "об/м" мигает

3.2.3. Просмотр журнала ошибок (предупреждения и аварии)

При возникновении любой неисправности на дисплее пульта отображается код неисправности. ПЧ регистрирует 10 последних предупреждающих и 10 последних аварийных сигналов. Пользователь может просмотреть коды последних аварий с помощью параметров P8-40 ~ P8-49 и коды последних предупреждений с помощью параметров P8-50 ~ P8-59.

3.2.4. Таблица отображаемых символов

0	1	2	3	4	5	6	7	8	9
	-]	Ц	5				
Α	В	С	D	Е	F	G	Н	I	J
	L		_	E	F		H		
K	L	М	Ν	0	Р	Q	R	S	Т
U	V	W	Χ	Υ	Z	-	+		=
				Ц		_	4		_
а	b	С	d	е	f	g	h	i	j
R	L	С	4		F		<u> </u>		_
k	I	m	n	0	р	q	r	S	t
	L		П				\mid \vdash		L
u	V	W	Х	у	Z			_	
П	U			Ц					

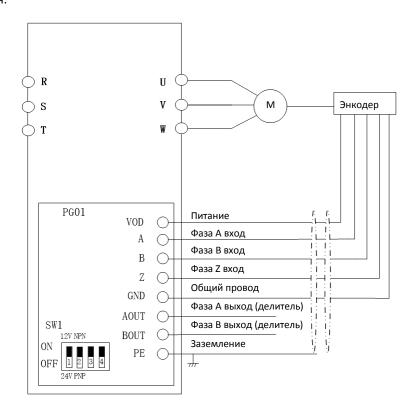
Глава 4. Другие опции для ПЧ серии AD800P

4.1. Внешний пульт управления КР02

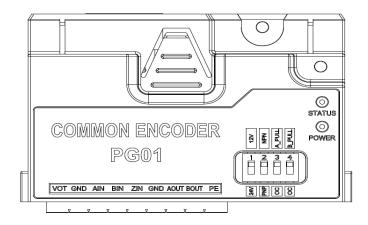
В пульте KPO2 используется многострочный текстовый ЖК-дисплей, часы реального времени и порт микро-USB. Основные функции дисплея:

- Поддержка одновременного отображения нескольких выбранных параметров и состояния преобразователя:
- Доступ ко всем параметрам преобразователя, возможность выбора параметров с быстрым доступом, создание пользовательского списка параметров;
- Текстовый дисплей поддерживает несколько языков, используемых для описания параметров, ошибок и способов их устранения;
- Порт USB позволяет обновлять прошивку пульта, скопировать и загрузить набор параметров, а также загрузить логотип пользователя;
- Поддержка подробных описаний аварий и предупреждений, запись времени событий и значений критических параметров;
- Наличие кнопки со свободным выбором функции.

Подробнее см. Руководство по эксплуатации на пульт КР02.



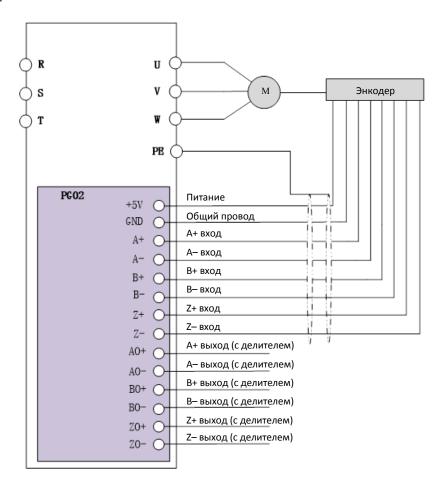
4.2. Платы подключения энкодера (PG)


Преобразователи AD800P поддерживают различные типы плат PG, см. Раздел 1.3.2.

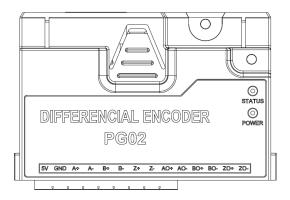
4.2.1. Плата подключения обычного энкодера PG01

Схема подключения:

Внешний вид и спецификации:

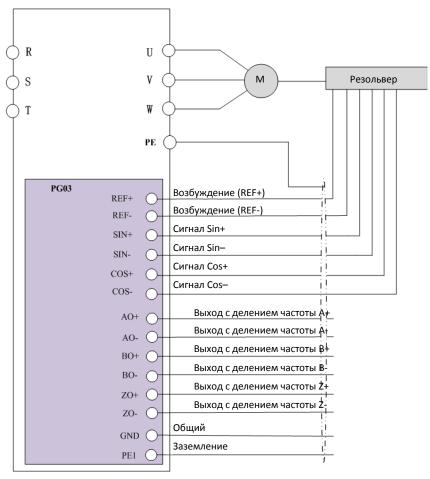


Клемма/Индикатор	Назначение	Спецификации		
		Максимальная частота 50 кГц		
	Импульсный входной	Типы подключаемых энкодеров:		
AIN/BIN/ZIN	сигнал	Push-Pull		
	CHITIAN	Выход по напряжению		
		Открытый коллектор		
AO/BO	Частотный выход с де-	Коэффициент деления частоты 0~255 задается в параметре		
АО/ВО	лителем			
		DIP-переключатель 12/24 B, по умолчанию 24 B;		
VOD	Питание энкодера	Точность поддержания напряжение 24 В (12 В) +/- 10%;		
		Максимальный выходной ток 150 мА		
	Общий провод внут-			
GND	реннего источника пи-			
	тания			
PE	Заземление			
DIP-переклю-чатель	SW-1 Питание	Выкл: 24 В (по умолчанию)		
SW1	эм-т питание	Вкл: 12 В		

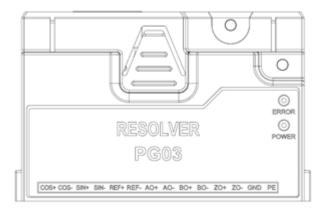

Клемма/Индикатор	Назначение	Спецификации	
	SW-2 Тип энкодера	Выкл: (Push-Pull, по напряжению) – по умолчанию	
	377-2 ТИП ЭНКОДЕРА	Вкл: (Push-Pull, открытый коллектор)	
	SW-3 Подтягивание	Выкл: нет подтягивания, открытый коллектор – по умолчанию	
	выхода фазы А	Вкл: подтягивание к VOD	
	SW-4 Подтягивание	Выкл: нет подтягивания, открытый коллектор – по умолчанию	
	выхода фазы В	Вкл: подтягивание к VOD	
STATUS	Индикатор наличия	Красный, горит постоянно: неисправность	
SIATUS	неисправности	Выключен: нормальная работа или нет питания	
POWER	Индикатор питания	Зеленый, горит постоянно: Питание в норме	
FOWER	Индикатор питания	Выключен: Питание выключено или не в норме	

4.2.2. Плата подключения дифференциального энкодера PG02

Схема подключения:



Внешний вид и спецификации:



Клемма/индикатор	Назначение	Спецификации
		Максимальная частота 200 кГц
A+/A-/B+/B-/Z+/Z-	Импульсный входной сигнал	Типы подключаемых энкодеров:
		Дифференциальный инкрементальный энкодер
AO+/AO-/BO+/BO-	Частотный выход с делителем	Коэффициент деления частоты 1~255 задается в пара-
/ZO+/ZO-	частотный выход с делителем	метре
VOD	Питания зника пора	Напряжение: 5 В +/-4%;
VOD	Питание энкодера	Максимальный выходной ток 150 мА
GND	Общий провод внутреннего	
GIND	источника питания	
PE	Защитное заземление	
STATUS	Индикатор наличия неисправ-	Красный, горит постоянно: неисправность
31A1U3	ности	Выключен: нормальная работа или нет питания
POWER	Индикатор питания	Зеленый, горит постоянно: Питание в норме
FOWER	Индикатор питания	Выключен: Питание выключено или не в норме

4.2.3. Плата подключения резольвера PG03

Внешний вид и спецификации

Клемма/индикатор	Назначение	Описание
REF+/REF-	Напряжение возбуждения	Напряжение: VRMS: 7B Частота: 10 кГц / 20 кГц Разрешение: 12 бит
SIN+/SIN- COS+/COS-	Входной сигнал резольвера	
AO+/AO-/BO+/BO- /ZO+/ZO-	Выходы с делением частоты	Тип сигнала: дифференциальный. Амплитуда: 5 В Коэффициент деления: 1
GND	Внутренний общий провод	
PE	Заземление	
STATUS	Индикатор ошибки	Красный горит: нет связи между PG03 и ПЧ Красный мигает: Внутренняя ошибка PG03 Не горит: всё в порядке или нет питания
POWER	Индикатор питания	Зеленый горит: питание подано Не горит: питание не подано или не соответствует тре- бованиям

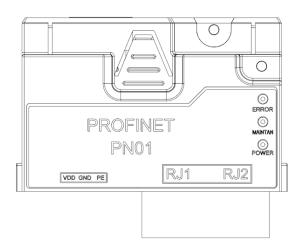
Примечание: при использовании PG03 необходимо установить P2-70=1

4.2.4. Параметры, связанные с платами энкодеров (PG01/PG02/PG03)

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение
P2-70	Разрешение энкодера	0~4096		1024
P2-71	Направление вращения энко- дера	0: Вперед 1: Назад		0
P2-72	Делитель	1~255		1
P2-74	Выбор частоты возбуждения для резольвера	0: 10 1: 10.87 2: 11.63 3: 12.82 4: 13.89 5: 15.63 6: 17.24 7: 20	кГц	0
P5-19	Действие при потере сигнала обратной связи от энкодера	0: Нет 3: Толчковый режим 4: Работа на максимальной скорости 5: Аварийный сигнал и останов на выбеге 11: Переключение в бездатчиковый режим управления		5
P5-20	Порог ошибки скорости для индикации потери обратной связи энкодера	1~600	об/мин	300
P5-21	Задержка сигнала о потере обратной связи энкодера	0.00~60.00	сек	0.05
P9-37	Обратная связь от энкодера			

4.3. Платы расширения DP1/PN1

4.3.1. Плата DP01 ProfiBus DP

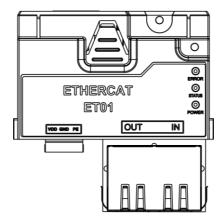

Функции:

- Автоматическое определение скорости обмена, поддерживаются скорости 9.6 kbps~12Mbps;
- До 32 узлов (включая ведущий) могут быть подключены к шине без репитера; до 122 узлов (31 узел на сегмент + 1 репитер) поддерживаются с использованием репитеров;
- Соответствие EMC стандарту EN 61800-3:2004;
- Поддержка обмена данными с ведущим по DPV0 и DPV1;

На плате DP01 имеется два индикатора состояния для мониторинга связи и переключатель для подключения терминального резистора. Функции описаны в таблице ниже:

Светодиод / пере- ключатель	Состояние	Описание
INOBUS	Горит зеленый	Связь с ПЧ в норме
INORO2	Горит красный	Связь с ПЧ в процессе установки или не установлена
FIELDBUS	Горит зеленый	Связь по шине в норме
FIELDBO3	Горит красный	Ошибка связи по шине
Терминальный ре-	ON	Включен
зистор	OFF	Выключен (по умолчанию)

4.3.2. Плата PN01 ProfiNet

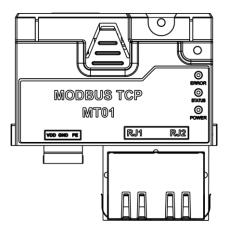

Функции:

- Скорость обмена до 100 Mbit/s, поддерживает связь IO и RT;
- Поддерживает все типы топологии: цепочка, шина, дерево или звезда.
- Простая установка в слот для опциональной платы в ПЧ, дополнительное питание не требуется.

На плате PN01 имеется три индикатора состояния для мониторинга состояния платы. Функции описаны в таблице ниже:

Светодиод	Состояние	Описание
ERROR	Горит красный	Ошибка опциональной платы
ENNON	Красный не горит	Нормальная связь
MAINTAN	Горит красный	Ошибка опциональной платы
IVIAINTAN	Красный не горит	Нормальная связь
POWER	Горит зеленый	Питание в норме
POWER	Зеленый не горит	Неисправность питания платы или преобразователя

4.3.3. Плата ET01 EtherCAT

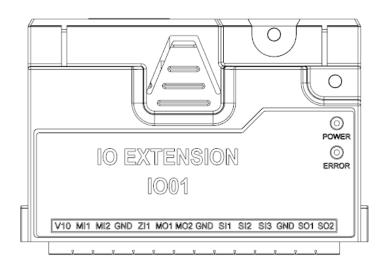

Функции:

- Скорость обмена по шине до 100Мбит/с, короткий такт шины, поддерживаются циклический (синхронный) обмен (PDO) и асинхронный обмен (Mailbox (FoE, CoE));
- Поддерживает линейную топологию.
- Простая установка в слот для опциональных плат, дополнительное питание не требуется.

На плате PN01 имеется три индикатора состояния для мониторинга состояния платы. Функции описаны в таблице ниже:

Светодиод	Состояние	Описание
	Горит красный	Ошибка связи по сети
ERROR	Красный мигает	Ошибка связи между платой ЕТО1 и преобразователем
	Красный не горит	Плата ЕТО1 в норме
	Горит зеленый	Нормальная связь по сети
STATUS	Зеленый мигает	Плата ET01 в состоянии Pro-OP
Зеленый не горит Ошибка связи г		Ошибка связи по сети
POWER	Горит зеленый	Питание в норме
POWER	Зеленый не горит	Неисправность питания платы или отсутствие питания

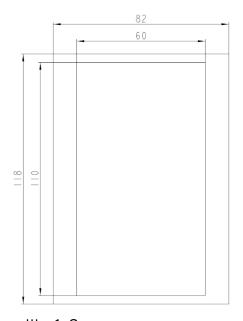
4.3.4. Плата MT01 Modbus TCP


Функции:

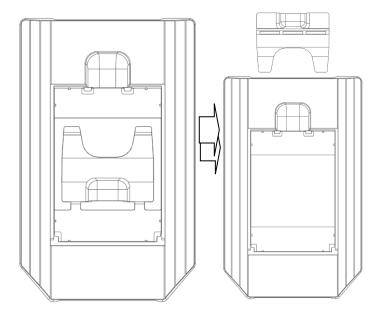
- Скорость обмена до 100 Mbit/s,;
- Поддерживает различные топологии шина, дерево, звезда и т.д.;
- Поддерживает функции 0x03, 0x06 и 0x10;
- Поддерживает до 6 клиентов одновременно.

На плате MT01 имеется три индикатора состояния для мониторинга состояния платы. Функции описаны в таблице ниже:

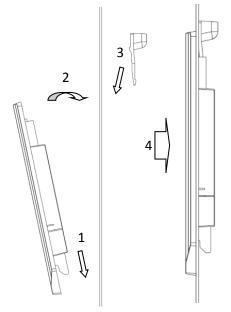
Светодиод	Состояние	Описание
	Горит красный	Ошибка связи по сети
ERROR	Красный мигает	Внутренняя ошибка
	Красный не горит	Нормальная связь по сети
	Горит зеленый	Идет обмен сообщениями
STATUS	Зеленый мигает	Идет обмен сообщениями
	Зеленый не горит	Нет обмена сообщениями
POWER Горит зеленый Питание в норме		Питание в норме
POWER	Зеленый не горит	Неисправность питания платы или отсутствие питания


4.3.5. ІОО1 Плата расширения входов / выходов

Функции:

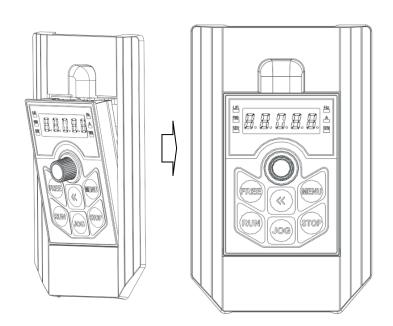

- Дискретные входы: 3, поддерживаются подключения PNP и NPN;
- Дискретные выходы: 2, открытый коллектор;
- Аналоговые входы: 2, -108~+10В и 0~10В/0~20мА;
- Резистивный вход: 1, поддерживает сопротивление 0~400 Ом;
- Аналоговые выходы: 2, 0~10В и 0~20мА;
- Источник питания: +10В 10мА;

4.4. Вынос штатного пульта управления.



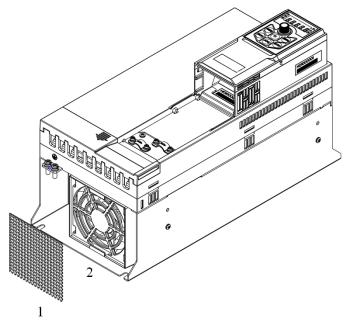
Шаг 1: Окно для пульта: Ширина: 60мм-82мм Длина: 110мм-118мм Глубина: 1мм-2мм

Рекомендуется: 60х115мм



Шаг 2: Подготовка: снимите фиксатор

Шаг 3: Установка корзины в окно


- 1. Установите корзину снизу в окно;
- 2. Установите корзину вертикально;
- 3. Сзади установите фиксатор;
- 4. Защелкните фиксатор

Шаг 4: Установка пульта в корзину

- 1. Установите направляющие снизу в корпус;
- 2. Поднимите пульт до защелкивания.

4.5. Установка фильтра вентилятора (модели 11-22 кВт)

Вставьте фильтр в соответствующее место на вентиляторе.

4.6. Другие опции

Для моделей 11-90 кВт существуют наборы для фланцевого (сквозного) монтажа. Для моделей до 22 кВт предлагается разделяющая плата для улучшения свойств ЕМС. Свяжитесь с поставщиком.

Глава 5. Базовые функции ПЧ серии AD800P

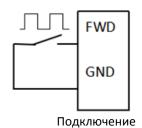
5.1. Управление с пульта

Убедитесь, что ПЧ работает в локальном режиме (мигает индикатор *Упр*). Если нет, установите P6-31=1 для переключения в локальный режим.

Установите заданную частоту потенциометром на пульте.

Нажмите кнопку "ПУСК" для запуска двигателя, отрегулируйте скорость потенциометром.

Нажмите кнопку "СТОП" для останова двигателя.


Примечание: В локальном режиме ПЧ получает команды только с пульта. Обычно локальный режим используется только для отладки системы.

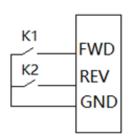
5.2. Управление с клемм

5.2.1. Управление пуском и остановом

5.2.1.1. Пуск и останов одним импульсным сигналом

Включите этот режим, установив P2-03=1, затем установите функцию 13 или 14 для одного из дискретных входов. Ниже показано подключение для реализации этой функции:

Параметр	Значение
P2-03	1
P2-05	13 или 14


Параметры

Вход	Состояние	Команда
	Остановлен	Пуск
	Работает	Стоп

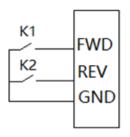
Действия

5.2.1.2. Двухпроводный режим 1 (Заводская установка)

Вход FWD по умолчанию настроен на функцию пуска вперед, вход REV по умолчанию настроен на функцию пуска назад. Для управления необходимо использовать два сигнала, как показано ниже:

Параметр	Значение
P2-05	10
P2-06	12

Параметры


K1	K2	Команда
Разомкнут	Разомкнут	Стоп
Замкнут	Разомкнут	Работа вперед
Разомкнут	Замкнут	Работа назад
Замкнут	Замкнут	Стоп

Действия

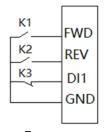
Подключение

5.2.1.3. Двухпроводный режим 2

Вход FWD по настроен на функцию пуск / останов, вход REV настроен на выбор направления. Для управления необходимо использовать два сигнала, как показано ниже:

Параметр	Значение
P2-05	10
P2-06	11

Параметры


K1	K2	Команда
Разомкнут	Разомкнут	Стоп
Замкнут	Разомкнут	Работа вперед
Разомкнут	Замкнут	Стоп
Замкнут	Замкнут	Работа назад

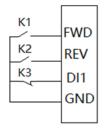
Действия

Подключение

5.2.1.4. Трехпроводный режим 1

Входы FWD и REV используются для импульсного пуска в различных направлениях, вход DI1 используется для останова. Для управления необходимо использовать три сигнала, как показано ниже:

Параметр	Значение	Функция
P2-05	13	Импульсный
F 2-03	13	пуск вперед
P2-06	14	Импульсный
P2-06	14	пуск назад
P2-07	4	Останов


K1	К2	К3	Команда
×	×	Разомкнут	Стоп
		22444114	Работа
J L	×	Замкнут	вперед
		2244/11/7	Работа
×	JL	Замкнут	назад

Подключение Параметры

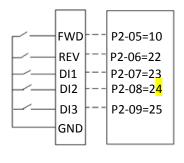
Действия

5.2.1.5. Трехпроводный режим 2

Вход FWD используется для импульсного пуска, вход REV используются для выбора направления, вход DI1 используется для останова. Для управления необходимо использовать три сигнала, как показано ниже:

Параметр	Значение	Функция
P2-05	13	Импульсный
P2-03	13	пуск
P2-06	11	Направление
P2-00	11	вращения
P2-07	4	Останов

K1	K2	К3	Команда
×	×	Разомкнут	Стоп
	Разомкнут	Замкнут	Работа
J L	rasolwikhy i	Jaminnyi	вперед
	Замкнут	Замкнут	Работа
J L	Замкнут	Замкнут	назад


Подключение

Параметры

Действия

5.2.2. Задание скорости

- В режиме удаленного управления по умолчанию для задания скорости могут использоваться аналоговый вход Al1 и последовательная связь. Задание скорости формируется сигналом 0 ~ 10В на клемме Al1 и/или командой по последовательной связи. Управление по последовательной связи описано в приложении A.
- Использование импульсного входа для задания скорости: задайте импульсный вход в качестве основного источника задания (P0-11 = 5), и выберите для клеммы DI3 функцию импульсного входа (P2-10 = 40). Теперь задание скорости можно устанавливать частотой на входе DI3. Задание скорости через импульсный вход обеспечивает повышенную точность и устойчивость к электромагнитным помехам.
- Выбор фиксированных заданий сигналами на дискретных входах. В некоторых применениях двигатель должен работать на нескольких фиксированных скоростях. Конкретная скорость выбирается сигналами на дискретных входах. Ниже показан пример 16 фиксированных скоростей, выбираемых сигналами на 4-х дискретных входах.

Состояние REVDI3				Фиксированные	
состояние кеуыз				значения	
0	0 0 0		0	P0-30	
0	0	0	1	P0-31	
1	1	1	0	P0-44	
1	1	1	1	P0-45	

Задание скорости

⇒ Р0-16 →

Подключение

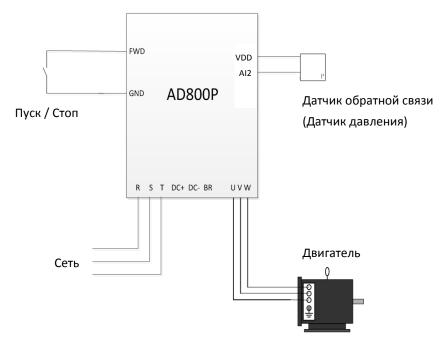
Параметры

дискретных входов

выбираемые сигналами на

Фиксированные значения в %,

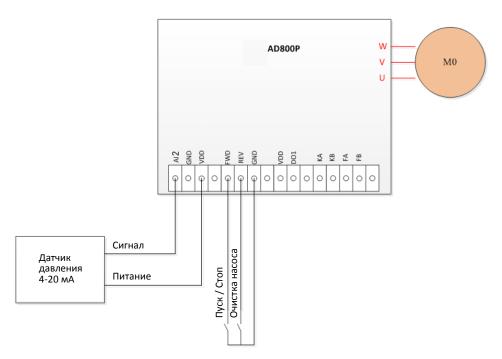
дискретных входах


На рисунке выше вход FWD настроен на двухпроводное управление, а входы REV-DI3 — на выбор фиксированных заданий. Скорость задается в % от значения P0-16, значение в % выбирается комбинацией сигналов на входах REV-DI3; например, если состояние входов REV-DI3 равно 1111, то выбирается значение в %, записанное в параметре P0-45. Задание скорости равно P0-45 * P0-16. Если для выбора фиксированного задания выбрано менее 4-х входов, то состояние недостающих входов принимается равным 0.

5.3. Применение ПИД-регулятора процесса

ПИД-регулятор процесса используется для регулирования параметра (давления, температуры и т.п.), на значение которой влияет скорость двигателя. Регулирование осуществляется минимизацией ошибки между заданием и обратной связью. ПИД-регулятор работает только в удаленном режиме.

- 1. Установите РО-11=21 (выход ПИД-регулятора в качестве основного задания).
- 2. Выберите источник сигнала обратной связи ПИД-регулятора в параметре P4-00 (по умолчанию не выбран). Например, если в качестве сигнала обратной связи предполагается использовать вход Al1, то нужно установить P4-00 = 1. Для выбора типа сигнала на входе Al1 (напряжение / ток) используйте параметр P3-00.
- 3. Выберите источник задания ПИД-регулятора в параметре P4-01 (по умолчанию не выбран). Например, при P4-01 = 11 задание выбирается из фиксированных значений сигналами на дискретных входах.
- 4. Выберите логику управления (положительная или отрицательная) в параметре Р4-04 в зависимости от требований применения. По умолчанию установлена положительная логика (отрицательная обратная связь: при уменьшении сигнала обратной связи скорость привода увеличивается).
- 5. Пропорциональный, интегральный и дифференциальный коэффициенты ПИД-регулятора устанавливаются в параметрах Р4-07, Р4-08 и Р4-09 соответственно.

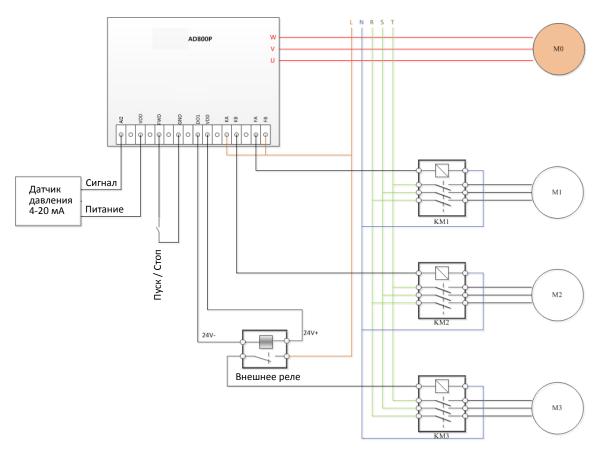

Простейшая схема подключения при использовании ПИД-регулятора приведена ниже; в ней сигнал обратной связи поступает на вход Al2:

5.4. Типовое применение: поддержание давления воды

5.4.1. Управление одним насосом

Ниже показана типовая схема подключения:

Установите следующие параметры:


- 1) Р0-03 (Макросы) = 1 (Насосное применение)
- 2) P20-00 (Pump control mode) = 0 (Pressure mode).
- 3) Р4-00 (Источник сигнала обратной связи ПИД-регулятора процесса)=2 (Аналоговый вход Al2)
- 4) Установите параметры входа AI2 (Р3-14~Р3-17) в соответствии с параметрами датчика давления.
- 5) Установите РО-30 (Предустановленное значение 0) в соответствии с требованиями (задание давления в % от диапазона датчика давления).
- 6) Р20-73 (Режим работы каскада насосов) = 0 (Нет).
- 7) Р20-40 (Работа по сети) = 0 (Выключена).
- 8) Р2-06 (Функция дискретного входа REV) = 65 (Очистка насоса).
- 9) Установите параметры, касающиеся режимов сна, заполнения трубы, очистки насоса, потери сигнала датчика обратной связи и т.д. в соответствии с необходимостью, см. описание соответствующих функций в главе 2.4.12.
- 10) Запустите насос сигналом на входе FWD.
- 11) Запустите цикл очистки насоса сигналом на входе REV.

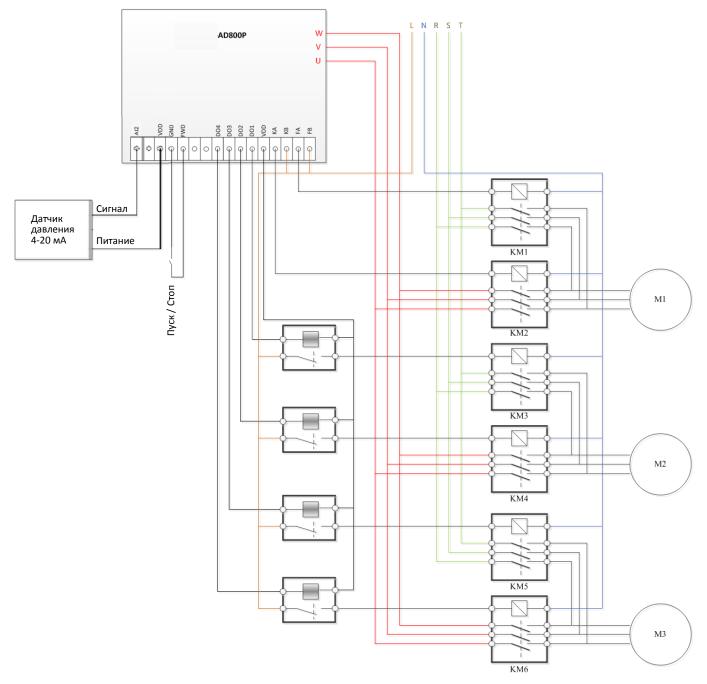
Примечание: После выполнения шагов 1) и 2) будут автоматически установлены следующие параметры:

- РО-11 (Основной источник задания)=21 (ПИД-регулятор процесса)
- Р4-00 (Источник сигнала обратной связи ПИД-регулятора процесса)=1 (Аналоговый вход АІ1)
- Р4-01 (Источник сигнала задания ПИД-регулятора процесса)=11 (Предустановленные значения)
- РО-30 (Предустановленное значение 0)=30.00%
- РО-02 (Принцип управления двигателем)=0 (V/F)
- P2-05 (Функция дискретного входа FWD)=64 (Пуск для макроса "Насосное применение").

5.4.2. Каскад с постоянным ведущим и ПИД-регулятором

Ниже показана типовая схема подключения на 3 дополнительных насоса:

Установите следующие параметры:


- 1) Р0-03 (Макросы) = 1 (Насосное применение)
- 2) P20-00 (Pump control mode) = 0 (Pressure mode).
- 3) Р4-00 (Источник сигнала обратной связи ПИД-регулятора процесса)=2 (Аналоговый вход Al2)
- 4) Установите параметры входа AI2 (P3-14~P3-17) в соответствии с параметрами датчика давления.
- 5) Установите РО-30 (Предустановленное значение 0) в соответствии с требованиями (задание давления в % от диапазона датчика давления).
- 6) Р20-40 (Работа по сети) = 0 (Выключена).
- 7) Р20-73 (Режим работы каскада насосов) = 1 (С постоянным ведущим).
- 8) Р20-81 (Количество насосов) = 3.
- 9) Р02-28 (Выбор функции реле RL1) = 64 (Управление насосом 1), Р02-31 (Выбор функции реле RL2) = 65 (Управление насосом 2), Р02-22 (Выбор функции дискретного выхода DO1) = 66 (Управление насосом 3).
- 10) Установите параметры, касающиеся условий подключения и отключения дополнительных насосов и чередования, см. описание соответствующих функций в главе 2.4.12.
- 11) Установите параметры, касающиеся режимов сна, заполнения трубы, очистки насоса, потери сигнала датчика обратной связи и т.д. в соответствии с необходимостью, см. описание соответствующих функций в главе 2.4.12.
- 12) Запустите насос сигналом на входе FWD.

Примечания:

В таблице ниже показаны значения параметров дискретных выходов в зависимости от количества насосов (Р20-81):

P20-81	P2-28	P2-31	P2-22	P2-23	P2-24	P2-25	P2-26
1	64	×	×	×	×	×	×
2	64	65	×	×	×	×	×
3	64	65	66	×	×	×	×
4	64	65	66	67	×	×	×
5	64	65	66	67	68	×	×
6	64	65	66	67	68	69	×
7	64	65	66	67	68	69	70

5.4.3. Каскад с переменным ведущим и ПИД-регулятором

Установите следующие параметры:

- 1) Р0-03 (Макросы) = 1 (Насосное применение)
- 2) P20-00 (Pump control mode) = 0 (Pressure mode).
- 3) Р4-00 (Источник сигнала обратной связи ПИД-регулятора процесса)=2 (Аналоговый вход АІ2)
- 4) Установите параметры входа AI2 (P3-14~P3-17) в соответствии с параметрами датчика давления.
- 5) Установите РО-30 (Предустановленное значение 0) в соответствии с требованиями (задание давления в % от диапазона датчика давления).
- 6) Р20-40 (Работа по сети) = 0 (Выключена).
- 7) Р20-73 (Режим работы каскада насосов) = 2 (С переменным ведущим).
- 8) Р20-81 (Количество насосов) = 3.
- 9) Р02-28 (Выбор функции реле RL1) = 64 (Управление насосом 1), Р02-31 (Выбор функции реле RL2) = 65 (Управление насосом 2), Р02-22 (Выбор функции дискретного выхода DO1) = 66 (Управление насосом 3). Р2-23 (Выбор функции дискретного выхода DO2) = 67 (Управление насосом 4), Р2-24 (Выбор функции дискретного вы

- хода DO3) = 68 (Управление насосом 5), P2-25 (Выбор функции дискретного выхода DO4) = 69 (Управление насосом 6).
- 10) Установите параметры, касающиеся условий подключения и отключения дополнительных насосов и чередования, см. описание соответствующих функций в главе 2.4.12.
- 11) Установите параметры, касающиеся режимов сна, заполнения трубы, очистки насоса, потери сигнала датчика обратной связи и т.д. в соответствии с необходимостью, см. описание соответствующих функций в главе 2.4.12.
- 12) Запустите насос сигналом на входе FWD.

Примечания:

В таблице ниже показаны значения параметров дискретных выходов в зависимости от количества насосов (Р20-81):

P20-81	P2-28	P2-31	P2-22	P2-23	P2-24	P2-25
1	64	65	×	×	×	×
2	64	65	66	67	×	×
3	64	65	66	67	68	69

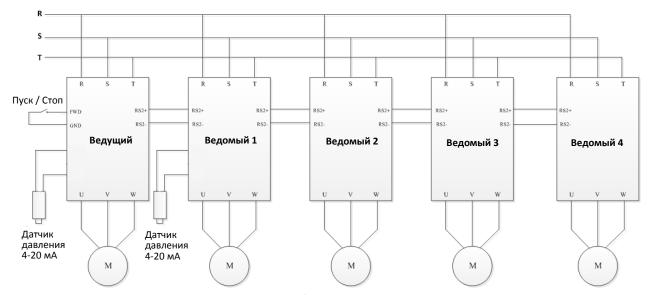
5.4.4. Работа в каскадном режиме по сети

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение	
METP			VISIVI.	эначение	изменении
P20-40	Работа в каскадном режиме по сети	0: Выключена; 1: Включена		0	*

Для работы в каскадном режиме по сети параметр должен быть равен 1. Перед установкой этого значения необходимо установить P20-73 (Режим работы каскада насосов) = 0 (Her).

Пара- метр	Наименование параметра	Настройки параметра	Ед. изм.	Заводское значение	Способ изменения
P20-41	Адрес в сети	1: Ведущий 2~5: Ведомые 1-4		2	*

Для ведущего этот параметр должен быть равным 1. Параметр P20-81 (Количество насосов) должен быть равен количеству ведомых насосов в системе; максимальное значение для P20-81 равно 4.


В таблице ниже показаны значения параметра Р20-41 для преобразователей в системе.

Р20-81(Ведущий)	Р20-41(Ведомый 1)	Р20-41(Ведомый 2)	Р20-41(Ведомый 3)	Р20-41(Ведомый 4)
1	2	×	×	×
2	2	3	×	×
3	2	3	4	×
4	2	3	4	5

Пара-	Наименование параметра	Настройки параметра	Ед.	Заводское	Способ
метр	палменование нараметра	пастроики параметра	изм.	значение	изменения
P20-42	Режим резервного ведущего	0: Выключен; 1: Включен		0	*

Если этот параметр на ведомом равен 1, то этот ведомый используется как резервный ведущий (функция доступна только для 1-го ведомого). Это означает, что данный ведомый будет работать в качестве ведущего, если основной ведущий остановился по аварии. Не устанавливайте этот параметр равным 1 больше, чем на одном ведомом, иначе ведущий выдаст ошибку A.166.

Ниже показана типовая схема подключения на 1 ведущий и 4 ведомых:

Примечание: при использовании резервного ведущего необходимо соединить его клеммы FWD и GND с такими же клеммами на основном ведущем.

Установите следующие параметры:

На ведущем:

Параметр	Наименование параметра	Значение	Комментарий
P0-03	Макросы	1	
P20-00	Режим работы	0	
P20-40	Работа в каскадном режиме по сети	1	
P20-41	Адрес в сети	1	
P20-42	Режим резервного ведущего	0	
P20-43	Частота при отсутствии связи		Установите нужное по технологии значение
P3-14	Минимальный входной ток для аналого- вого входа AI2		
P3-15	Максимальный входной ток для анало- гового входа AI2		Установите эти параметры в соответствии с
P3-16	Значение сигнала на входе при мини- мальном токе / напряжении на входе AI2		параметрами датчика давления
P3-17	Значение сигнала на входе при макси- мальном токе / напряжении на входе AI2		
P4-02	Базовое значение для сигналов задания и обратной связи ПИД-регулятора процесса	100.0	
P20-73	Режим работы каскада насосов	0	
P20-74	Частота добавления насоса		
P20-75	Отклонение давления для добавления насоса		
P20-76	Частота отключения одного насоса		Установите значения этих параметров в со-
P20-77	Отклонение давления для отключения насоса		ответствии с необходимостью
P20-78	Задержка добавления или отключения насоса		
P20-81	Количество насосов	4	
P20-60	Включение спящего режима		
P20-61	Частота спящего режима		1
P20-62	Давление спящего режима		
P20-63	Задержка спящего режима		Установите значения этих параметров в со-
P20-64	Минимальная длительность спящего режима		ответствии с необходимостью
P20-65	Давление выхода из спящего режима		1
P20-66	Задержка выхода из спящего режима]

На ведомом 1 (резервном ведущем):

Параметр	Наименование параметра	Значение	Комментарий
P0-03	Макросы	1	
P20-00	Режим работы	0	
P20-40	Работа в каскадном режиме по сети	1	
P20-41	Адрес в сети	2	
P20-42	Режим резервного ведущего	1	Ведомый 1 – резервный ведущий
P20-43	Частота при отсутствии связи		Установите нужное по технологии значение
P3-14	Минимальный входной ток для аналого- вого входа AI2		
P3-15	Максимальный входной ток для аналогового входа AI2		Way ya Barriyaa
P3-16	Значение сигнала на входе при мини- мальном токе / напряжении на входе AI2		Как на ведущем
P3-17	Значение сигнала на входе при макси- мальном токе / напряжении на входе AI2		
P20-73	Режим работы каскада насосов	0	
P20-74	Частота добавления насоса		
P20-75	Отклонение давления для добавления насоса		
P20-76	Частота отключения одного насоса		1.,
P20-77	Отклонение давления для отключения насоса		Как на ведущем
P20-78	Задержка добавления или отключения насоса		
P20-81	Количество насосов	4	
P20-60	Включение спящего режима		
P20-61	Частота спящего режима		
P20-62	Давление спящего режима		
P20-63	Задержка спящего режима		Как на ведущем
P20-64	Минимальная длительность спящего режима		как на ведущем
P20-65	Давление выхода из спящего режима		
P20-66	Задержка выхода из спящего режима		

На ведомом 2:

Параметр	Наименование параметра	Значение	Комментарий
P0-03	Макросы	1	
P20-00	Режим работы	0	
P20-40	Работа в каскадном режиме по сети	1	
P20-41	Адрес в сети	3	
P20-42	Режим резервного ведущего	0	
P20-43	Частота при отсутствии связи		Установите нужное по технологии значение

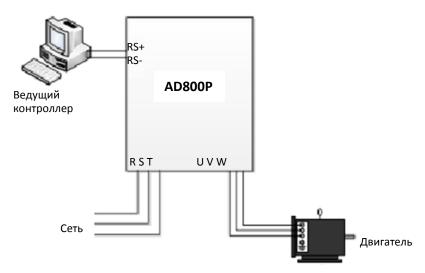
На ведомом 3:

Параметр	Наименование параметра	Значение	Комментарий
P0-03	Макросы	1	
P20-00	Режим работы	0	
P20-40	Работа в каскадном режиме по сети	1	
P20-41	Адрес в сети	4	
P20-42	Режим резервного ведущего	0	
P20-43	Частота при отсутствии связи		Установите нужное по технологии значение

На ведомом 4:

Параметр	Наименование параметра	Значение	Комментарий
P0-03	Макросы	1	
P20-00	Режим работы	0	
P20-40	Работа в каскадном режиме по сети	1	
P20-41	Адрес в сети	5	
P20-42	Режим резервного ведущего	0	

Параметр	Наименование параметра	Значение	Комментарий
P20-43	Частота при отсутствии связи		Установите нужное по технологии значение


Запустите насос сигналом на входе FWD.

5.5. Простая настройка связи по Modbus

В удаленном режиме преобразователь может управляться по последовательной связи с протоколом Modbus. Ниже приведен алгоритм настройки системы.

- Установите параметры P0-80...P0-82 в соответствии с параметрами связи ведущего контроллера. Адрес ведомого преобразователя частоты устанавливается в параметре P0-80 (по умолчанию 1). Скорость обмена устанавливается в параметре P0-81 (по умолчанию 9600). Формат данных выбирается в параметре P0-82 (по умолчанию установлен контроль четности и один стоповый бит). Параметры связи для ведущего и ведомого должны быть одинаковыми.
- Для пуска привода запишите соответствующую команду в регистр 9999, и задание в регистр 10000. Подробнее см. приложение А.

Ниже показана типовая схема подключения:

5.6. Управление двигателем с постоянными магнитами

Ниже приведен алгоритм настройки управления двигателем с постоянными магнитами (РМ).

1. Введите основные параметры двигателя

Установите параметры двигателя с его заводской таблички в соответствии с таблицей ниже:

Пара- метр	Наименование	Настройки	Ед. изм.	Заводское значение
*P1-02	Тип двигателя	0: Асинхронный 1: Синхронный с поверхностными магнитами (SPM) 2: Синхронный с заглубленными магнитами (IPM) без насыщения 3: Синхронный с заглубленными магнитами (IPM) с насыщением		0
*P1-06	Номинальный ток двигателя	Зависит от данных двигателя	Α	*
*P1-07	Номинальная скорость двигателя 100~24000		Об/м ин	*
*P1-08	Номинальный момент двигателя	0.1~6553.5	Н∙м	*
*P1-24	Число полюсов двигателя	2~100	шт.	4
*P1-25	Противо-ЭДС на номинальной скорости для двигателей с ПМ	0~9000	В	*

Примечание: Выясните тип двигателя (SPM или IPM) у производителя и установите его в параметре P1-02. Если тип двигателя выяснить не удалось, установите P1-02=3. Для управления двигателем PM нет необходимости устанавли-

вать номинальную мощность, номинальное напряжение и номинальную частоту. Установите параметры двигателя в строгом соответствии со списком выше.

2. Автонастройка на двигатель

Установите Р1-13=2 (Полная статическая автонастройка) и запустите функцию автонастройки (см. главу 6.11).

- 3. Запустите и остановите привод. Так же, как и для асинхронного двигателя, привод можно остановить через пульт, сигналом на дискретном входе или командой по последовательной связи.
- 4. Примечания

А. Установите нужный способ пуска двигателя РМ:

Пара- метр	Наименование	Настройки	Ед. изм.	Заводское значение
P1-63	Метод пуска двигателей с ПМ	0: Определение начальной позиции (IPD) 1: Возврат в начальную позицию		1
P1-86	Ток возврата в начальную позицию (пуск двигателей с ПМ)	0~150	%	80
P1-87	Время возврата в начальную позицию (пуск двигателей с ПМ)	0.1~60.0	сек	3.0

В параметре Р1-63 можно выбрать один из двух вариантов пуска. Для двигателей SPM рекомендуется только возврат в начальную позицию (Р1-63=1). Постоянный ток возврата устанавливается параметром Р1-86, время возврата устанавливается параметром Р1-87. Функция IPD (Р1-63=0) может использоваться для пуска двигателей IPM, при этом автоматически определяется положение ротора во избежание обратного вращения при пуске. Выбор возврата в начальную позицию при пуске может привести к повороту в обратном направлении. Максимальный угол поворота в обратном направлении составляет 180 электрических градусов.

В. Установка параметров для получения высокого пускового момента

В применениях, требующих высокий пусковой момент, в начале разгона может появиться вибрация и аварийный останов. В этом случае сначала проверьте, правильно ли установлены параметры двигателя. Если параметры установлены правильно, то для получения высокого пускового момента можно использовать следующий параметр:

Пара- метр	Наименование	Настройки	Ед. изм.	Комментарий
P1-36	Минимальный ток двигате- ля на низкой скорости	0~120	%	Увеличение этого параметра увеличивает момент на низких скоростях

5.7. Управление асинхронным двигателем в замкнутой системе

Ниже приведен алгоритм настройки управления асинхронным двигателем в замкнутой системе.

1. Введите основные параметры двигателя

Установите значения параметров двигателя P1-03~P1-07 в точном соответствии с заводской табличкой двигателя.

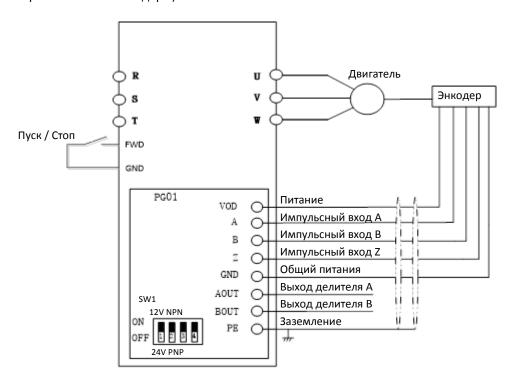
Внимание: При недостаточной информации или ее отсутствии на заводской табличке получите данные у производителя двигателя. Если производитель не может предоставить полные и корректные данные, установите 4 базовых параметра: номинальную мощность (Р1-03), номинальное напряжение (Р1-04), номинальную частоту (Р1-05) и номинальный ток (Р1-06). Этих четырех параметров достаточно для обеспечения хорошей работы.

2. Автонастройка на двигатель

Установите Р1-13=2 (Полная статическая автонастройка) и запустите функцию автонастройки (см. главу 6.11).

- 3. Введите разрешение энкодера и направление вращения (параметры P2-70/P2-71).
- 4. Проверьте корректность обратной связи, запустив двигатель без нагрузки при управлении без обратной связи. Например, запустите двигатель на частоте 5 Гц, проверьте корректность значения параметра Р9-37 по величине и знаку. Если знак не верен, установите Р2-71=1 для смены знака сигнала от энкодера. Если Р9-37 сильно отличается от ожидаемого значения (например, для 4-полюсного двигателя, вращающегося на частоте 5 Гц без нагрузки, значение Р9-37 должно быть около 2.5), проверьте, правильно ли установлено разрешение энкодера в параметре Р2-70.
- 5. Выберите режим управления Р-01=1 (Замкнутая система с датчиком скорости)

6. При необходимости настройте параметры ПИ-регулятора скорости:


Пара- метр	Наименование	Настройки	Ед. изм.	Заводское значение
P4-30	Коэффициент пропорциональности для ПИД-регулятора скорости	0.000~1.000		0.010
P4-31	Время интегрирования для ПИД- регулятора скорости	2.0~2000.0	мс	8.0
P4-32	Время дифференцирования для ПИД- регулятора скорости	0.0~200.0	сек	30.0
P4-33	Предел дифференцирования для ПИД- регулятора скорости	1.000~20.000		5.000
P4-34	Постоянная времени фильтрации сигнала для ПИД-регулятора скорости	1.0~100.0	сек	10.0

7. Выберите действие при потере обратной связи для правильной работы при проблемах с энкодером.

Установите следующие параметры в соответствии с требованиями применения:

Пара- метр	Наименование	Настройки	Ед. изм.	Заводское значение
P5-19	Действие при потере сигнала обратной связи от энкодера	0: Нет 3: Толчковый режим и предупреждение 4: Работа на максимальной скорости, заданной в Р5-03 и предупреждение 5: Аварийный сигнал и останов на выбеге 11: Переключение в бездатчиковый режим управления		5
P5-20	Значение ошибки скорости для обнаружения потери обратной связи энкодера	1~600	об/ мин	300
P5-21	Время обнаружения потери обратной связи энкодера	0.00~60.0	сек	0.05

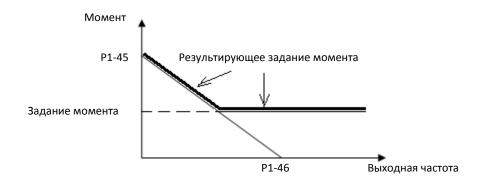
8. Ниже показан пример подключений для работы в замкнутой системе (для примера взята плата энкодера PG01, поддерживающая инкрементальные энкодеры):

5.8. Управление моментом асинхронного двигателя в разомкнутой системе

Ниже приведен алгоритм настройки управления моментом асинхронного двигателя в разомкнутой системе.

1. Введите основные параметры двигателя

Установите значения параметров двигателя P1-03~P1-07 в точном соответствии с заводской табличкой двигателя.


Внимание: При недостаточной информации или ее отсутствии на заводской табличке получите данные у производителя двигателя. Если производитель не может предоставить полные и корректные данные, установите 4 базовых параметра: номинальную мощность (Р1-03), номинальное напряжение (Р1-04), номинальную частоту (Р1-05) и номинальный ток (Р1-06). Этих четырех параметров достаточно для обеспечения хорошей работы.

2. Автонастройка на двигатель

Установите Р1-13=2 (Полная статическая автонастройка) и запустите функцию автонастройки (см. главу 6.11).

- 3. Установите параметры, связанные с управлением моментом, в соответствии с требованиями применения.
- 1) Функция минимального момента

Пара- метр	Наименование	Настройки	Ед. изм.	Заводское значение
P1-45	Минимальный пусковой момент в режиме управления моментом	-100~100	%	5
P1-46	Минимальная скорость отсечки момента при пуске в режиме управления моментом	0.1~50.0	Гц	3.0

2) Коэффициенты ПИ-регулятора момента:

Пара- метр	Наименование	Настройки	Ед. изм.	Заводское значение
P4-40	Коэффициент пропорциональности для ПИ-регулятора момента	0~500	%	100
P4-41	Время интегрирования для ПИ- регулятора момента	0.002~2.000	сек	0.020

3) Функция ограничения скорости в режиме управления момента:

Пара- метр	Наименование	Настройки	Ед. изм.	Заводское значение
P5-06	Источник задания ограничения скорости в режиме управления моментом	0~30		0

4. Настройка

- Установка задания момента. В локальном режиме задание момента может быть введено напрямую потенциометром (например, установка потенциометром значения 1.2 означает задание момента 1.2 Нм). В удаленном режиме источник задания момента может быть выбран параметром P0-13; например, установка P0-13=1 определяет задание момента сигналом на аналоговом входе AI1, при этом 0~10V соответствует заданию 0%~100% от номинального момента (P1-08).
- Запустите и остановите привод. Аналогично режиму управления скоростью, привод может быть запущен и остановлен с пульта, дискретных входов или по последовательной связи.

5.9. Сброс параметров на заводские значения

Задайте значение параметра Р7-00=9;

Полностью отключите и включите снова ПЧ, на дисплее пульта отобразится: А.01

Нажмите кнопку «СТОП», чтобы сбросить A.01, после чего параметры будут сброшены до заводских значений по умолчанию, за исключением групп параметров 8 и 9.

5.10. Сброс аварийных сообщений

Для неблокированных аварий, чтобы сбросить аварийное сообщение, нажмите кнопку «СТОП».

Для заблокированных аварий:

Если параметр P5-30=0, для сброса аварийного сообщения нажмите «СТОП»;

Если параметр P5-30=1, сначала необходимо отключить и включить питание, а затем нажать кнопку «СТОП», чтобы сбросить аварийное сообщение.

Вы также можете установить функцию дискретного входа DI для сброса аварии (один из параметров от P2-05 до P2-09 равен 1) и для сброса аварийного сообщения использовать сигнал на этом входе.

5.11. Параметры автонастройки двигателя

Убедитесь, что двигатель остановлен.

Установите параметры от P1-02 до P1-07 в соответствии с данными шильдика двигателя.

Установите для параметра Р1-13 значение 1 или 2.

После того, как значение параметра P1-13 будет подтверждено, на дисплее пульта появится надпись «PUSH RUN». Нажмите кнопку «ПУСК», ПЧ запустит функцию автонастройки параметров двигателя. Во время автонастройки на дисплее отображается надпись «-At-». Не подавайте никаких команд во время автонастройки. Когда на дисплее появится надпись «PUSH Ent», нажмите на потенциометр. Функция автонастройки параметров двигателя будет завершена, а параметры двигателя обновлены.

Примечание. Вы можете остановить работу функции автонастройки параметров двигателя, нажав кнопку «СТОП».

Глава 6. Приложение А. Руководство по последовательной связи Modbus

ПЧ AD800P имеет на борту интерфейс связи RS485. Он реализует международный стандарт протокола последовательной связи Modbus в формате связи Master-Slave. Данный формат позволяет реализовать централизованное управление через ПК/ПЛК, чтобы обеспечить требования конкретного применения.

6.1. Режим применения

6.1.1. Интерфейс

Интерфейсом связи является RS485. RS485 работает в полудуплексном режиме, и его сигнал данных использует дифференциальную передачу, которая также называется балансной передачей.

6.1.2. Сетевые характеристики

Преобразователь имеет два сетевых режима: сеть с одним Master / несколькими Slave и сеть с одним Master / одним Slave.

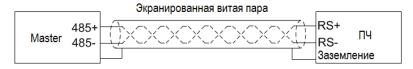
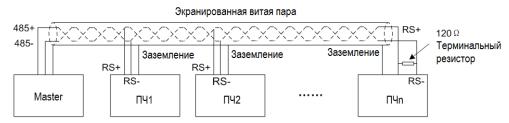



Схема сети с одним Master/несколькими Slave:

Характеристики:

- Независимо от того, какой применяется режим, ПЧ используется при последовательной связи в качестве Slave. Когда Master отправляет команды, используя широковещательный адрес, Slave не отвечает;
- При последовательной связи в формате с одним Master / несколькими Slave рекомендуется использовать только экранированные кабели. Базовые параметры последовательной связи для устройств, такие, как скорость передачи данных и бит проверки в RS485, должны быть одинаковыми у Master и Slave устройств, и у Slave устройств не должно быть повторяющихся адресов.

6.2. Протокол связи

Протокол связи Modbus поддерживает только режим RTU. Формат фрейма данных RTU показан ниже:

Спецификация:

Старт	Не менее 3,5 свободных символов
Адрес Slave устройства	Адрес: 0-127 (0 является широковещательным адресом)
Функциональный код	Функциональный код Modbus
Данные (N-1)	
Данные (N-2)	2 * N
	— 2 * N данных
Данные 0	
CRC CHK старшие 8 бит	Therenus CDC
CRC CHK младшие 8 бит	Проверка CRC
Конец	Не менее 3,5 свободных символов

6.3. Коды функций

Коды функций Modbus, поддерживаемые ПЧ серии AD800P показаны ниже:

Код	Функция	Описание
0x03	Чтение одного или нескольких реги-	Чтение функциональных параметров и параметров рабочего со-
UXUS	стров	стояния ПЧ
0x06	Установка одиночного регистра	Запись параметров конкретного ПЧ
0x10	Установка нескольких регистров	Запись нескольких регистров

6.4. Адрес регистра

Все последующие адреса регистров начинаются с 0.

6.4.1. Адрес регистра номера параметра

Параметры могут быть изменены по последовательной связи. Правила определения адреса регистра конкретного параметра приведены ниже:

Адрес регистра = PNU - 1

Пример:

Адрес регистра параметра P0-30 равен 30 - 1 = 29 (0x001D)

Адрес регистра параметра P9-11 равен 911 - 1 = 910(0x038E)

Внимание:

Параметры групп 8 и 9 имеют статус «только для чтения».

ПЧ не поддерживает запись или чтение нескольких параметров одновременно.

Внимание: для охранения измененных по Modbus значений параметров после отключения питания нужно предварительно установить P0-86 = 1 с пульта.

6.4.2. Спецификация адресов других регистров

В дополнение к вышеперечисленным регистрам Modbus, связанным с параметрами, в ПЧ есть несколько дополнительных регистров, которые можно использовать для управления и контроля состояния ПЧ. Эти регистры могут поддерживать запись или чтение максимум для 10 регистров одновременно.

Адрес регистра	Спецификация	R/W (чтение/запись)
9999*	Управляющая команда	W
10000*	Задание частоты	W
10099 [*]	Состояние	R
10100 [*]	Коды ошибок и предупреждений	R
10101	Выходная частота (0~ Гмакс., шаг: 0.1 Гц)	R
10102	Выходной ток (шаг: 0.01 А)	R
10103	Выходное напряжение (шаг: 1 В)	R
10104	Выходная мощность (шаг: 0.01 кВт)	R
10105	Скорость двигателя (шаг: 1 об/мин)	R
10106	Напряжение на шине постоянного тока (шаг: 1 В)	R
10107	Задание	R
10108	Обратная связь ПИД-регулятора процесса	R

* Спецификация регистра 9999

Бит	Спецификация
	0х00h: Нет
	0x01h: Вращение вперед
	0x02h: Вращение назад
Биты 7~0 (управление пус-	0x03h: Jog вперед
ком/остановом и др.)	0x04h: Jog назад
	0x05h: Останов
	0x06h: Останов на выбеге
	0x07h: Сброс
	0000В:Р0-30 (Значение 0)
Биты 11~8 (Выбор фиксированно-	0001В: Р0-31(Значение 1)
го значения)	
	1111В: РО-45(Значение 15)

	00B: время разгона/замедления 1
Биты 13~12 (выбор времени раз-	01В: время разгона/замедления 2
гона/замедления)	10В: время разгона/замедления 3
	11B: время разгона/замедления 4
Бит 14	Зарезервирован
F 1 F	1B: Включение функций для Битов 8~13
Бит 15	0В: Отключение функций для Битов 8~13

^{*} Спецификация регистра 10000:

При использовании связи для управления приводом вы можете установить частоту напрямую, записав ее регистр 10000 в шестнадцатеричном виде. Значение регистра находится в диапазоне $0.00 \sim P5-08$, шаг 0.01 Гц. Например, задание частоты 45 Гц в десятичном виде отображается как 4500, в шестнадцатеричном как 1194h, и именно это значение следует записать в регистр 10000.

* Спецификация регистра 10099:

Бит	Спецификация
Бит 0	0В: Нет
ВИТО	1В: Предупреждение
Бит 1	0В: Нет
ВИГІ	1В: Авария
	00В: Останов
Биты 3~2	01В: Вращение вперед
Виты з 2	10В: Вращение назад
	11В: Зарезервирован
Биты 7 [~] 4	Зарезервированы
	0000В: Применение фиксированного значения 0
 Биты 11~8	0001В: Применение фиксированного значения 1
DUIDITI O	
	1111В: Применение фиксированного значения 15
Биты 15 [~] 12	Зарезервированы

^{*} Спецификация регистра 10100:

Регистр 10100 используется для считывания кода предупреждения/аварии ПЧ. Например: когда в ПЧ происходит авария А.48, значение регистра 10100 равно 48. Когда в ПЧ появляется предупреждающий сигнал u.24, значение регистра 10100 равно 24.

6.5. Коэффициент для данных, передаваемых по последовательной связи

Данные, передаваемые по последовательной связи, выражаются в шестнадцатеричном формате, а в шестнадцатеричном формате нет десятичной точки. Например, если вы хотите установить P5-08=61,5, то 61,5 можно увеличить в 10 раз до 615. Таким образом, шестнадцатеричное число 0x0267 (615) можно использовать для выражения 61,5. Значения данного коэффициента задаются в виде значения степени (1: 10, 2: 100 и т.д.) и относятся к основным настройкам значений по умолчанию в списке функциональных параметров.

6.6. Сообщение об ошибке

В процессе обмена данными могут быть ошибки, например, некоторые параметры доступны только для чтения, но ПК/ПЛК отправляет команду на запись, и ПЧ в этом случае выдает сообщение об ошибке. Формат фрейма данных сообщения об ошибке показан ниже:

Код функции сообщения об ошибке = код функции запроса + 0x80 Спецификация кода ошибки:

Код ошибки	Спецификация
0x01	Ошибка кода функции, ПЧ не поддерживает такой код
0x02	Неверный адрес регистра
0x03	Значение параметра выходит за верхний предел допустимого диапазона
0x04	Ошибка операции

6.7. Примеры

6.7.1. Чтение одного или нескольких регистров (0х03)

6.7.1.1. Считывание скорости двигателя

Считывание параметра Р9-04 (регистр 903) для определения скорости двигателя.

Запрос: 01 03 03 87 00 01 34 67 (шестнадцатеричный) Отклик: 01 03 02 05 DC BA 8D (шестнадцатеричный)

Спецификация данных запроса:

Поле	Описание
01	Адрес
03	Функция
03 87	Адрес регистра: 903 (0х0387)
00 01	Число считываемых регистров: 1

Спецификация данных отклика:

Поле	Описание
01	Адрес
03	Функция
02	Число байт полученных данных
05 DC	0x05DC преобразуется в десятичное число 1500. Значит, значение Р9-04 равно 1500 об/мин

6.7.1.2. Чтение состояния ПЧ, кодов предупреждений/аварий и выходной частоты

Чтение 10099, 10100, 10101 для получения всей информации.

Запрос: 01 03 27 73 00 03 FE A4 (шестнадцатеричный)

Отклик: 01 03 06 00 04 00 00 01 F4 D0 A2 (шестнадцатеричный)

Спецификация данных запроса:

Поле	Описание
01	Адрес
03	Функция
2773	Адрес регистра: 100099(0x2773)
00 03	Число считываемых регистров: 3
FE A4	Проверка CRC

Спецификация данных отклика:

Поле	Описание
01	Адрес
03	Функция
06	Число байт полученных данных
00 04 00 00 01	Значение в регистре 10099 равно 0х0004.
F4	Примечание:
	Бит 0 имеет значение 0В, означает, что предупреждений нет;
	Бит 1 имеет значение ОВ, означает, что аварий нет;
	Биты 3~2 имеют значение 01В, означает, что происходит вращение вперед;
	Биты 11~8 имеют значение 0000В, означает, что выбрано фиксированное значение 0;
	Значение регистра 10100 равно 0х0000(0). ПЧ не имеет предупреждений/аварий, поэтому оно
	равно 0.
	Значение регистра 10101 равно 0x01F4(500). Выходная частота равна 500/10=50.0 Гц

6.7.2. Запись одиночного регистра (0х06)

Внимание: для охранения измененных по Modbus значений параметров после отключения питания нужно предварительно установить P0-86 = 1 с пульта.

Задание номинальной скорости двигателя 1430 об/мин.

Запись Р1-07(регистр 106) =1430.

Запрос: 01 06 00 6A 05 96 2A E8 (шестнадцатеричный) Отклик: 01 06 00 6A 05 96 2A E8 (шестнадцатеричный)

Спецификация данных запроса:

Поле	Описание
01	Адрес
06	Функция
00 6A	Адреса регистров параметра P1-07: 107-1= 106(0x006A)
05 96	Устанавливаемое значение в Р1-07 равно 0х0596(1430)

Спецификация данных отклика:

Поле	Описание
01	Адрес
06	Функция
00 6A	Адреса регистра параметра P1-07: 107-1= 106(0x006A)
05 96	Значение параметра Р1-07 равно 0х0596(1430)

6.7.3. Запись нескольких регистров (0х10)

Пуск ПЧ и задание ему выходной частоты.

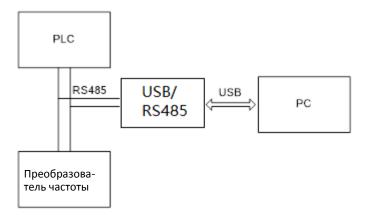
Запись регистра 9999 для управления ПЧ и регистра 10000 для задания выходной частоты.

Запрос: 01 10 27 0F 00 02 04 00 01 09 C4 5A 1D (шестнадцатеричный)

Отклик: 01 10 27 0F 00 02 7B 7F (шестнадцатеричный)

Спецификация данных запроса:

Поле	Описание
01	Адрес
10	Функция
27 OF	Адрес регистра: 9999(0x270F)
00 02	Число записываемых регистров: 2
04	Число байт записываемых данных: 4
00 01 09 C4	Регистр 9999= 0х0001
	Примечание:
	Биты 7~0 имеют значение 0х01, означает, что происходит вращение вперед;
	Биты 11~8 имеют значение 0000В, означает, что выбрано фиксированное значение 0;
	Биты 13~12 имеют значение 00В, означает, что задано время разгона/замедления 1;
	Бит 15 имеют значение 0B, означает, что биты 13~8 отключены;
	Регистр 10000= 0x09C4(2500, опорная частота равна 2500/100 = 25.00 Гц)


Спецификация данных отклика:

Поле	Описание
01	Адрес
10	Функция
27 OF	Адрес регистра: 9999(0x270F)
00 02	Число записываемых регистров 2
01	Адрес

6.8. Отладка

Большинство клиентов используют специализированное или закрытое коммуникационное приложение или функцию, предоставляемую поставщиком ПЛК или панели управления. При сбое связи трудно определить, проблема ли это в ведущем устройстве или в преобразователе частоты. В этом случае вы можете использовать для диагностики любую тестирующую программу для ПК.

Подключите ПК, как показано на рисунке ниже. Обычно ПК не имеет порта RS485, и для подключения необходим конвертер USB/RS485. Тестирующая программа должна позволять отслеживать детали сообщения, отправленного с ведущего, и сообщения, на которые ответил преобразователь частоты.

Версия оригинального руководства: V1.0

Дата обновления: 2025.11.12 Дата перевода: 2025.01.30